Citation: | Zhao Jingbo, Pan Yuelong, Li Jiebiao, Wu Qun, Liu Yu, Ji Ruili, Zhou Zhichao, 2023. Inverse Modeling of Parameterized Hydraulic Conductivity Field in a Fractured Medium Based on Pilot Point Method. Earth Science, 48(10): 3878-3895. doi: 10.3799/dqkx.2022.031 |
Anderson, M. P., Woessner, W. W., Hunt, R. J., 2015. Applied Groundwater Modeling: Simulation of Flow and Advective Transport. Academic Press, San Diego.
|
Blessent, D., Therrien, R., Lemieux, J. M., 2011. Inverse Modeling of Hydraulic Tests in Fractured Crystalline Rock Based on a Transition Probability Geostatistical Approach. Water Resources Research, 47(12): W12530. https://doi.org/10.1029/2011wr011037
|
Carle, S. F., Fogg, G. E., 1996. Transition Probability-Based Indicator Geostatistics. Mathematical Geology, 28(4): 453-476. https://doi.org/10.1007/BF02083656
|
Carniato, L., Schoups, G., Giesen, N., et al., 2015. Highly Parameterized Inversion of Groundwater Reactive Transport for a Complex Field Site. Journal of Contaminant Hydrology, 173: 38-58. https://doi.org/10.1016/j.jconhyd.2014.12.001
|
Chen, Y. F., Ling, X. M., Liu, M. M., et al., 2018. Statistical Distribution of Hydraulic Conductivity of Rocks in Deep-Incised Valleys, Southwest China. Journal of Hydrology, 566: 216-226. https://doi.org/10.1016/j.jhydrol.2018.09.016
|
China Geological Survey, 2012. Hydrogeological Manual (2nd Edition). Geological Publishing House, Beijing, 680-684 (in Chinese).
|
Clifton, P. M., Neuman, S. P., 1982. Effects of Kriging and Inverse Modeling on Conditional Simulation of the Avra Valley Aquifer in Southern Arizona. Water Resources Research, 18(4): 1215-1234. https://doi.org/10.1029/wr018i004p01215
|
De Marsily, G., Lavedan, G., Boucher, M., et al., 1984. Interpretation of Interference Tests in a Well Field Using Geostatistical Techniques to Fit the Permeability Distribution in a Reservoir Model. Geostatistics for Natural Resources Characterization. Springer Netherlands, Dordrecht, 831-849. https://doi.org/10.1007/978-94-009-3701-7_16
|
Deutsch, C. V., Journel, A. G., 1998. GSLIB: Geostatistical Software and User's Guide (Second Edition). Oxford University Press, New York.
|
Doherty, J., 2015. Calibration and Uncertainty Analysis for Complex Environmental Models. Watermark Numerical Computing, Brisbane, Australia.
|
El Idrysy, E. H., Smedt, F., 2007. A Comparative Study of Hydraulic Conductivity Estimations Using Geostatistics. Hydrogeology Journal, 15(3): 459-470. https://doi.org/10.1007/s10040-007-0166-0
|
Fang, K., Ji, X., Shen, C., et al., 2019. Combining a Land Surface Model with Groundwater Model Calibration to Assess the Impacts of Groundwater Pumping in a Mountainous Desert Basin. Advances in Water Resources, 130: 12-28. https://doi.org/10.1016/j.advwatres.2019.05.008
|
Finsterle, S., 2006. Demonstration of Optimization Techniques for Groundwater Plume Remediation Using iTOUGH2. Environmental Modelling & Software, 21(5): 665-680. https://doi.org/10.1016/j.envsoft.2004.11.012
|
Follin, S., Hartley, L., Rhén, I., et al., 2014. A Methodology to Constrain the Parameters of a Hydrogeological Discrete Fracture Network Model for Sparsely Fractured Crystalline Rock, Exemplified by Data from the Proposed High-Level Nuclear Waste Repository Site at Forsmark, Sweden. Hydrogeology Journal, 22(2): 313-331. https://doi.org/10.1007/s10040-013-1080-2
|
Gu, W. Z., Pang, Z. H., Wang, Q. J., et al., 2011. Isotope Hydrology. Science Press, Beijing, 432(in Chinese).
|
Guo, Y. H., Wang, J., Jin, Y. X., 2001. The General Situation of Geological Disposal Repository Siting in the World and Research Progress in China. Earth Science Frontiers, 8(2): 327-332(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2001.02.017
|
Hartley, L., Joyce, S., 2013. Approaches and Algorithms for Groundwater Flow Modeling in Support of Site Investigations and Safety Assessment of the Forsmark Site, Sweden. Journal of Hydrology, 500: 200-216. https://doi.org/10.1016/j.jhydrol.2013.07.031
|
Huo, S. Y., Jin, M. G., 2017. Effect of Parameter Sensitivity of van Genuchten Model on Numerical Simulation of Rainfall Recharge. Earth Science, 42(3): 447-452 (in Chinese with English abstract).
|
Jiang, L. Q., Sun, R. L., Liang, X., 2021. Predicting Groundwater Flow and Transport in the Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160 (in Chinese with English abstract).
|
Kapoor, A., Kashyap, D., 2021. Parameterization of Pilot Point Methodology for Supplementing Sparse Transmissivity Data. Water, 13(15): 2082. https://doi.org/10.3390/w13152082
|
Keller, J., Franssen, H., Nowak, W., 2021. Investigating the Pilot Point Ensemble Kalman Filter for Geostatistical Inversion and Data Assimilation. Advances in Water Resources, 155: 104010. https://doi.org/10.1016/j.advwatres.2021.104010
|
Li, Y. G., Lan, J. K., Li, R. L., et al., 2016. Permeability Coefficients of Weathering Zones in Huashan Granite of Guangxi. Journal of Guilin University of Technology, 36(4): 681-687(in Chinese with English abstract). doi: 10.3969/j.issn.1674-9057.2016.04.006
|
Maji, R., Sudicky, E. A., Panday, S., et al., 2006. Transition Probability/Markov Chain Analyses of DNAPL Source Zones and Plumes. Ground Water, 44(6): 853-863. https://doi.org/10.1111/j.1745-6584.2005.00194.x
|
Park, Y. J., Sudicky, E. A., McLaren, R. G., et al., 2004. Analysis of Hydraulic and Tracer Response Tests within Moderately Fractured Rock Based on a Transition Probability Geostatistical Approach. Water Resources Research, 40(12): W12404. https://doi.org/10.1029/2004wr003188
|
Poeter, E. P., Hill, M. C., 1999. UCODE, a Computer Code for Universal Inverse Modeling. Computers & Geosciences, 25(4): 457-462. https://doi.org/10.1016/s0098-3004(98)00149-6
|
Rubin, Y., Gómez-Hernández, J. J., 1990. A Stochastic Approach to the Problem of Upscaling of Conductivity in Disordered Media: Theory and Unconditional Numerical Simulations. Water Resources Research, 26(4): 691-701. https://doi.org/10.1029/wr026i004p00691
|
Sivakumar, B., Halter, T., Zhang, H., 2005. A Fractal Investigation of Solute Travel Time in a Heterogeneous Aquifer: Transition Probability/Markov Chain Representation. Ecological Modelling, 182(3/4): 355-370. https://doi.org/10.1016/j.ecolmodel.2004.04.010
|
Usman, M., Qamar, M. U., Becker R., et al., 2020. Numerical Modelling and Remote Sensing Based Approaches for Investigating Groundwater Dynamics under Changing Land-Use and Climate in the Agricultural Region of Pakistan. Journal of Hydrology, 581: 124408. https://doi.org/10.1016/j.jhydrol.2019.124408
|
van Genuchten, M. T., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
|
Wang, J. Zhang, T. L., Zheng, H. L., 1999. Geological Disposal of Radioactive Waste in the World. Atomic Energy Press, Beijing(in Chinese).
|
Wen, X. H., Capilla, J. E., Deutsch, C. V., et al., 1999. A Program to Create Permeability Fields That Honor Single-Phase Flow Rate and Pressure Data. Computers & Geosciences, 25(3): 217-230. https://doi.org/10.1016/S0098-3004(98)00126-5
|
Xue, Y. Q., 1986. Principles of Groundwater Dynamics. Geological Publishing House, Beijing (in Chinese).
|
Yang, J. Z., Cai, S. Y., Huang, G. H., et al., 2000. Stochastic Theory of Groundwater and Solute Transport in Porous Media. Science Press, Beijing, 21-48 (in Chinese).
|
Yeh, T. C., Liu, S. Y., 2000. Hydraulic Tomography: Development of a New Aquifer Test Method. Water Resources Research, 36(8): 2095-2105. https://doi.org/10.1029/2000WR900114
|
Zhang, H., Harter, T., Sivakumar, B., 2006. Nonpoint Source Solute Transport Normal to Aquifer Bedding in Heterogeneous, Markov Chain Random Fields. Water Resources Research, 42(6): W06403. https://doi.org /10.1029/2004WR003808
|
Zhao, P., Liu, J., Chen, L., et al., 2017. Experimental Study on Gas Relative Permeability of Unsaturated Granite. Chinese Journal of Underground Space and Engineering, 13(1): 57-62, 70(in Chinese with English abstract).
|
Zhou, H. Y., 2011. Parameter Identification of Non-Gaussian Aquifer Based on Ensemble Kalman Filter Method (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
|
顾慰祖, 庞忠和, 王全九, 等, 2011. 同位素水文学. 北京: 科学出版社, 432.
|
郭永海, 王驹, 金远新, 2001. 世界高放废物地质处置库选址研究概况及国内进展. 地学前缘, 8(2): 327-332. doi: 10.3321/j.issn:1005-2321.2001.02.017
|
霍思远, 靳孟贵, 2017. Van Genuchten模型参数对降水入渗数值模拟的敏感性. 地球科学, 42(3): 447-452. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXG201707008.htm
|
蒋立群, 孙蓉琳, 梁杏. 2021. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202111027.htm
|
李有光, 蓝俊康, 黎容伶, 等, 2016. 广西花山花岗岩体风化带的渗透系数. 桂林理工大学学报, 36(4): 681-687. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201604006.htm
|
王驹, 张铁岭, 郑华铃, 1999. 世界放射性废物地质处置. 北京: 原子能出版社.
|
薛禹群, 1986. 地下水动力学原理. 北京: 地质出版社.
|
杨金忠, 蔡树英, 黄冠华, 等, 2000. 多孔介质中水分及溶质运移的随机理论. 北京: 科学出版社, 21-48.
|
赵鹏, 刘健, 陈亮, 等, 2017. 非饱和花岗岩气体相对渗透率试验研究. 地下空间与工程学报, 13(1): 57-62, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701009.htm
|
中国地质调查局, 2012. 水文地质手册. 第2版. 北京: 地质出版社, 680-684.
|
周海燕, 2011. 基于集合卡尔曼滤波法的非高斯含水层参数识别(博士学位论文). 北京:中国地质大学 .
|