• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 7
    Jul.  2022
    Turn off MathJax
    Article Contents
    Liu Baojun, Pang Xiong, Xie Shiwen, Mei Lianfu, Zhen Jinyun, Sun Hui, Yan Hui, Wu Yuxiang, Xiang Xuhong, Feng Xuan, 2022. Control Effect of Crust-Mantle Detachment Fault Activity on Deep Large Delta Sedimentary System in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2354-2373. doi: 10.3799/dqkx.2022.035
    Citation: Liu Baojun, Pang Xiong, Xie Shiwen, Mei Lianfu, Zhen Jinyun, Sun Hui, Yan Hui, Wu Yuxiang, Xiang Xuhong, Feng Xuan, 2022. Control Effect of Crust-Mantle Detachment Fault Activity on Deep Large Delta Sedimentary System in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2354-2373. doi: 10.3799/dqkx.2022.035

    Control Effect of Crust-Mantle Detachment Fault Activity on Deep Large Delta Sedimentary System in Baiyun Sag, Pearl River Mouth Basin

    doi: 10.3799/dqkx.2022.035
    • Received Date: 2021-07-30
    • Publish Date: 2022-07-25
    • Crust-mantle detachment faults and its sedimentary system response are the hotspots of the study on continental margin evolution in the world. In this paper it focuses on the Baiyun Sag in the Pearl River Mouth Basin under a systematic dissection. Combined with the new progress in the evolution of continental margins, it is revealed through long cable three-dimensional seismic data and comprehensive drilling interpretation that the main control fault zone in the southern Baiyun Sag is mainly composed of 4 rows of NEE-NE trending high-angle shovel-type crust-mantle detachment faults, which reach to the Moho Surface. Three stages of tectonic activities were identified, as isostatic rifting, detachment rifting, and fault-depression transformation. During the isostatic rifting stage (Lower Wenchang Formation), when the depression-controlling fault had not extended to the Moho Surface, axial steep-slope braided river delta-lacustrine deposition systems were developed, while the gentle slope provenance system was not well developed. During the detachment rifting stage (Upper Wenchang Formation), crust-mantle detachment faulted to the Moho Surface, showing strong horizontal extension and vertical drop, which led to the strong rotation, warping, uplifting and denudation of the hanging wall, and became the main source system of gentle slopes where large delta system developed. At the meantime, the north downshrown side of the fault became deep lake. During the fault-depression transition stage (Enping Formation), the detachment effect weakened and the subsidence increased significantly, which controlled the development of the large delta-lacustrine sedimentary system advancing in the NW-SE direction and the flexure of the gentle slope in the north. As a result, the tectonic evolution of the main control fault in the Baiyun Sag led the depositional systems transferred from the east-west axial braided river deltas in Lower Wenchang Formation to large deltas developed in gentle slopes in the Enping Formation, and fan delta sandstone developed as well in the steep slope belts around the sags consistently. Three types of large-scale reservoirs and lacustrine mudstone combinations have been identified, so the deep-water exploration targets have expanded to the middle and deep layers.

       

    • loading
    • Chen, C. M., Shi, H. S., Xu, S. C., et al., 2003. The Conditions of Hydrocarbon Accumulation of the Tertiary Petroleum System in the Pearl River Mouth Basin. Science Press, Beijing (in Chinese).
      Chen, F. J., Wang, X. W., Chen, Z. N., et al., 2004. Analysis of Extensional Fault Basin. Geological Publishing House, Beijing (in Chinese).
      Cui, Y.C., Cao, L.C., Qiao, P.J., et al., 2018. Provenance Evolution of Paleogene Sequence (Northern South China Sea) Based on Detrital Zircon U-Pb Dating Analysis. Earth Science, 43(11): 4169-4179 (in Chinese with English abstract).
      Ebinger, C. J., 1989. Tectonic Development of the Western Branch of the East African Rift System. Geological Society of America Bulletin, 101(7): 885-903. https://doi.org/10.1130/0016-7606(1989)1010885:tdotwb>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2
      Guo, R.J., Ji, H.C., Wen, Z.X., et al., 2019. The Relation between Tectonic Activity and Sedimentary Framework: Evidence from the Lake Albert, East African Rift System. Marine Geology Frontiers, 35(3): 1-12 (in Chinese with English abstract).
      Hou, Y.L., Shao, L., Qiao, P.J., et al., 2020. Provenance of the Eocene-Miocene Sediments in the Baiyun Sag, Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 40(2): 19-28 (in Chinese with English abstract).
      Huismans, R., Beaumont, C., 2011. Depth-Dependent Extension, Two-Stage Breakup and Cratonic Underplating at Rifted Margins. Nature, 473(7345): 74-78. https://doi.org/10.1038/nature09988
      Lavier, L. L., Manatschal, G., 2006. A Mechanism to Thin the Continental Lithosphere at Magma-Poor Margins. Nature, 440(7082): 324-328. https://doi.org/10.1038/nature04608
      Liu, B.J., Pang, X., Wang, J.H., et al., 2019. Sedimentary System Response Process and Hydrocarbon Exploration Significance of Crust Thinning Zone at Extensional Continental Margin of Deep-Water Area in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 124-138 (in Chinese with English abstract).
      Liu, B.J., Pang, X., Yan, C.Z., et al., 2011. Evolution of the Oligocene-Miocene Shelf Slope-Break Zone in the Baiyun Deep-Water Area of the Pearl River Mouth Basin and Its Significance in Oil-Gas Exploration. Acta Petrolei Sinica, 32(2): 234-242 (in Chinese with English abstract).
      Masini, E., Manatschal, G., Mohn, G., 2013. The Alpine Tethys Rifted Margins: Reconciling Old and New Ideas to Understand the Stratigraphic Architecture of Magma-Poor Rifted Margins. Sedimentology, 60(1): 174-196. https://doi.org/10.1111/sed.12017
      Mckenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012-821X(78)90071-7
      Mi, L.J., Liu, B.J., He, M., et al., 2016. Petroleum Geology Characteristics and Exploration Direction in Baiyun Deep Water Area, Northern Continental Margin of the South China Sea. China Offshore Oil and Gas, 28(2): 10-22 (in Chinese with English abstract).
      Morley, C. K., 1989. Extension, Detachments, and Sedimentation in Continental Rifts (with Particular Reference to East Africa). Tectonics, 8(6): 1175-1192. https://doi.org/10.1029/tc008i006p01175 doi: 10.1029/TC008i006p01175
      Pang, X., Ren, J.Y., Zheng, J.Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 27-39 (in Chinese with English abstract).
      Péron-Pinvidic, G., Manatschal, G., 2009. The Final Rifting Evolution at Deep Magma-Poor Passive Margins from Iberia-Newfoundland: A New Point of View. International Journal of Earth Sciences, 98(7): 1581-1597. https://doi.org/10.1007/s00531-008-0337-9
      Qi, J.F., Yang, Q., 2007. Structural Styles of Extensional Basins and Their Main Controlling Factors of Dynamics. Oil & Gas Geology, 28(5): 634-640 (in Chinese with English abstract).
      Ren, J.Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract).
      Ren, J.Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract).
      Roberts, A. W., White, R. S., Lunnon, Z. C., et al., 2005. Imaging Magmatic Rocks on the Faroes Margin. Geological Society, London, Petroleum Geology Conference Series, 6(1): 755-766. https://doi.org/10.1144/0060755
      Shi, H.S., Du, J.Y., Mei, L.F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract).
      Shi, H.S., Liu, B.J., Yan, C.Z., et al., 2010. Hydrocarbon Accumulation Conditions and Exploration Potential in Baiyun-Liwan Deepwater Area, Pearl River Month Basin. China Offshore Oil and Gas, 22(6): 369-374 (in Chinese with English abstract).
      Sun, Z., Li, F.C., Lin, J., et al., 2021. The Rifting- Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract).
      Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      Sun, Z., Liu, S.Q., Pang, X., et al., 2016. Recent Research Progress on the Rifting-Breakup Process in Passive Continental Margins. Journal of Tropical Oceanography, 35(1): 1-16 (in Chinese with English abstract).
      Sun, Z., Pang, X., Zhong, Z.H., et al., 2005. Dynamics of Tertiary Tectonic Evolution of the Baiyun Sag in the Pearl River Mouth Basin. Earth Science Frontiers, 12(4): 489-498 (in Chinese with English abstract).
      Sutra, E., Manatschal, G., Mohn, G., et al., 2013. Quantification and Restoration of Extensional Deformation along the Western Iberia and Newfoundland Rifted Margins. Geochemistry, Geophysics, Geosystems, 14(8): 2575-2597. https://doi.org/10.1002/ggge.20135
      Tian, L.X., Zhang, Z.T., Pang, X., et al., 2020. Characteristics of Overpressure Development in the Mid-Deep Strata of Baiyun Sag and Its New Enlightenment in Exploration Activity. China Offshore Oil and Gas, 32(6): 1-11 (in Chinese with English abstract).
      Unternehr, P., Péron-Pinvidic, G., Manatschal, G., et al., 2010. Hyper-Extended Crust in the South Atlantic: In Search of a Model. Petroleum Geoscience, 16(3): 207-215. https://doi.org/10.1144/1354-079309-904
      Vetti, V. V., Fossen, H., 2012. Origin of Contrasting Devonian Supradetachment Basin Types in the Scandinavian Caledonides. Geology, 40(6): 571-574. https://doi.org/10.1130/g32512.1 doi: 10.1130/G32512.1
      Wernicke, B., 1981. Low-Angle Normal Faults in the Basin and Range Province: Nappe Tectonics in an Extending Orogen. Nature, 291(5817): 645-648. https://doi.org/10.1038/291645a0
      Xiao, M., Wu, S. T., Yuan, X. J., et al., 2021. Conglomerate Reservoir Pore Evolution Characteristics and Favorable Area Prediction: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. Journal of Earth Science, 32(4): 998-1010. https://doi.org/10.1007/s12583-020-1083-6
      Yan, P., Zhou, D., Liu, Z. S., 2001. A Crustal Structure Profile across the Northern Continental Margin of the South China Sea. Tectonophysics, 338(1): 1-21. https://doi.org/10.1016/S0040-1951(01)00062-2
      Zeng, Z.W., Zhu, H.T., Yang, X.H., et al., 2017. Provenance Transformation and Sedimentary Evolution of Enping Formation, Baiyun Sag, Pearl River Mouth Basin. Earth Science, 42(11): 1936-1954 (in Chinese with English abstract).
      Zhang, G.Y., Ma, F., Liang, Y.B., et al., 2015. Domain and Theory-Technology Progress of Global Deep Oil & Gas Exploration. Acta Petrolei Sinica, 36(9): 1156-1166 (in Chinese with English abstract).
      Zhang, L., Chen, S.H., 2017. Reservoir Property Response Relationship under Different Geothermal Gradients in the Eastern Area of the Pearl River Mouth Basin. China Offshore Oil and Gas, 29(1): 29-38 (in Chinese with English abstract).
      Zhou, Z. C., Mei, L. F., Liu, J., et al., 2018. Continentward-Dipping Detachment Fault System and Asymmetric Rift Structure of the Baiyun Sag, Northern South China Sea. Tectonophysics, 726: 121-136. https://doi.org/10.1016/j.tecto.2018.02.002
      陈长民, 施和生, 许仕策, 等, 2003. 珠江口盆地(东部)第三系油气藏形成条件. 北京: 科学出版社.
      陈发景, 汪新文, 陈昭年, 等, 2004. 伸展断陷盆地分析. 北京: 地质出版社.
      崔宇驰, 曹立成, 乔培军, 等, 2018. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化. 地球科学, 43(11): 4169-4179. doi: 10.3799/dqkx.2017.594
      郭瑞婧, 季汉成, 温志新, 等, 2019. 东非裂谷系Albert湖盆构造活动对沉积充填的影响. 海洋地质前沿, 35(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201903001.htm
      侯元立, 邵磊, 乔培军, 等, 2020. 珠江口盆地白云凹陷始新世-中新世沉积物物源研究. 海洋地质与第四纪地质, 40(2): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202002003.htm
      柳保军, 庞雄, 王家豪, 等, 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(增刊1): 124-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1011.htm
      柳保军, 庞雄, 颜承志, 等, 2011. 珠江口盆地白云深水区渐新世-中新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201102008.htm
      米立军, 柳保军, 何敏, 等, 2016. 南海北部陆缘白云深水区油气地质特征与勘探方向. 中国海上油气, 28(2): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602002.htm
      庞雄, 任建业, 郑金云, 等, 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征: 以南海北部陆缘深水区白云凹陷为例. 石油勘探与开发, 45(1): 27-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801004.htm
      漆家福, 杨桥, 2007. 伸展盆地的结构形态及其主控动力学因素. 石油与天然气地质, 28(5): 634-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200705017.htm
      任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114.
      任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812016.htm
      施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm
      施和生, 柳保军, 颜承志, 等, 2010. 珠江口盆地白云-荔湾深水区油气成藏条件与勘探潜力. 中国海上油气, 22(6): 369-374. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201006004.htm
      孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      孙珍, 刘思青, 庞雄, 等, 2016. 被动大陆边缘伸展-破裂过程研究进展. 热带海洋学报, 35(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201601001.htm
      孙珍, 庞雄, 钟志洪, 等, 2005. 珠江口盆地白云凹陷新生代构造演化动力学. 地学前缘, 12(4): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200504024.htm
      田立新, 张忠涛, 庞雄, 等, 2020. 白云凹陷中深层超压发育特征及油气勘探新启示. 中国海上油气, 32(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202006001.htm
      曾智伟, 朱红涛, 杨香华, 等, 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936-1954. doi: 10.3799/dqkx.2017.123
      张光亚, 马锋, 梁英波, 等, 2015. 全球深层油气勘探领域及理论技术进展. 石油学报, 36(9): 1156-1166.
      张丽, 陈淑慧, 2017. 珠江口盆地东部地区不同地温梯度下储层特征响应关系. 中国海上油气, 29(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201701004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (1638) PDF downloads(136) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return