Citation: | Li Zhihua, Li Bile, Li Peng, Sun Yaming, Shi Yufan, 2023. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes of Diorite in Heishishan Copper Polymetallic Deposit, East Kunlun. Earth Science, 48(12): 4465-4480. doi: 10.3799/dqkx.2022.067 |
Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola: Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5): 554-566. https://doi.org/10.1007/s004100000211
|
Chen, B., Xiong, F.H., Ma, C.Q., et al., 2021. Coupling Relation between Magma Mixing and Igneous Petrological Diversity: An Example of Bairiqili Felsic Pluton in East Kunlun Orogen. Earth Science, 46(6): 2057-2072(in Chinese with English abstract).
|
Chen, G.C., Pei, X.Z., Li, R.B., et al., 2018. Triassic Magma Mixing and Mingling at the the Eastern Section of Eastern Kunlun: A Case Study from Xiangjiananshan Granitic Batholith. Acta Petrologica Sinica, 34(8): 2441-2480(in Chinese with English abstract).
|
Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0
|
Ding, Q.F., Jiang, S.Y., Sun, F.Y., 2014. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 205: 266-283. https://doi.org/10.1016/j.lithos.2014.07.015
|
Dong, Y.P., He, D.F., Sun, S.S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
|
Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., et al., 2003. Fractional Crystallization and Mantle-Melting Controls on Calc-Alkaline Differentiation Trends. Contributions to Mineralogy and Petrology, 145(5): 515-533. https://doi.org/10.1007/s00410-003-0448-z
|
Guo, X.Z., Li, Y.Z., Jia, Q.Z., et al., 2018. Geochronology and Geochemistry of the Wulonggou Orefield Related Granites in Late Permian-Triassic East Kunlun: Implication for Metallogenic Tectonic. Acta Petrologica Sinica, 34(8): 2359-2379(in Chinese with English abstract).
|
Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
|
Huang, H., Niu, Y.L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010
|
Jiang, Z.J., 2021. Geological Characteristics and Ore Genesis of the Heishishan Cu-Pb-Zn Deposit in Wulonggou Area, East Kunlun (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
|
Jung, S., Hoernes, S., Mezger, K., 2002. Synorogenic Melting of Mafic Lower Crust: Constraints from Geochronology, Petrology and Sr, Nd, Pb and O Isotope Geochemistry of Quartz Diorites (Damara Orogen, Namibia). Contributions to Mineralogy and Petrology, 143(5): 551-566. https://doi.org/10.1007/s00410-002-0366-5
|
Kelemen, P.B., 1995. Genesis of High Mg# Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. https://doi.org/10.1007/bf00311004
|
Kong, H.L., Li, Y.Z., Li, J.C., et al., 2021. Petrogenesis of Xiwanggou Olivine Gabbro in East Kunlun Mountains: Constraints from Geochemistry, Zircon U-Pb Dating and Hf Isotopes. Geology in China, 48(1): 173-188(in Chinese with English abstract).
|
Li, B.L., Sun, F.Y., Yu, X.F., et al., 2012. U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granitic Belt. Acta Petrologica Sinica, 28(4): 1163-1172(in Chinese with English abstract).
|
Li, R.B., Pei, X.Z., Li, Z.C., et al., 2012. Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244-254 (in Chinese with English abstract).
|
Li, R.B., Pei, X.Z., Li, Z.C., et al., 2018. Paleo-Tethys Ocean Subduction in Eastern Section of East Kunlun Orogen: Evidence from the Geochronology and Geochemistry of the Wutuo Pluton. Acta Petrologica Sinica, 34(11): 3399-3421(in Chinese with English abstract).
|
Li, X.W., Huang, X.F., Luo, M.F., et al., 2015. Petrogenesis and Geodynamic Implications of the Mid-Triassic Lavas from East Kunlun, Northern Tibetan Plateau. Journal of Asian Earth Sciences, 105: 32-47. https://doi.org/10.1016/j.jseaes.2015.03.009
|
Li, Z.H., Li, B.L., Li, P., et al., 2023. Petrogenesis and Magma Fertility of the Heishishan Skarn Deposit, East Kunlun, NW China: Insights from Geochronology, Mineralogy, Geochemistry, and Sr-Nd-Hf Isotopes. Ore Geology Reviews, 157: 105436. https://doi.org/10.1016/j.oregeorev.2023.105436
|
Li, Z.H., Li, B.L., Wang, B., et al., 2023. Genesis and Geological Significance of Sulfide Bearing Mafic Enclaves and Host Syenite in Heishishan, East Kunlun: Evidence from Geochronology, Mineralogy, Geochemistry and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 39(3): 742-762(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.03.08
|
Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2004. Mixing Events between the Crust- and Mantle-Derived Magmas in Eastern Kunlun: Evidence from Zircon SHRIMP Ⅱ Chronology. Chinese Science Bulletin, 49(6): 596-602(in Chinese). doi: 10.1360/csb2004-47-6-596
|
Liu, J.N., Feng, C.Y., Qi, F., et al., 2012. SIMS Zircon U-Pb Dating and Fluid Inclusion Studies of Xiadeboli Cu-Mo Ore District in Dulan County, Qinghai Province, China. Acta Petrologica Sinica, 28(2): 679-690(in Chinese with English abstract).
|
Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015. Intensity and Cyclicity of Orogenic Magmatism: an Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555-3568(in Chinese with English abstract).
|
Mao, J.W., Zhou, Z.H., Feng, C.Y., et al., 2012. A Preliminary Study of the Triassic Large-Scale Mineralization in China and Its Geodynamic Setting. Geology in China, 39(6): 1437-1471(in Chinese with English abstract).
|
Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
|
Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2007.03.010
|
Pearce, J.A., Peate, D.W., 1995. Tectonic Implocations of the Composition of Volcanic Arc Magmas. Annual Review of Earth & Planetary Sciences, 23: 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
|
Pearce, T.H., Gorman, B.E., Birkett, T.C., 1977. The Relationship between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks. Earth and Planetary Science Letters, 36(1): 121-132. https://doi.org/10.1016/0012-821x(77)90193-5
|
Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
|
Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
|
Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
|
Richards, J.P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533. https://doi.org/10.2113/gsecongeo.98.8.1515
|
Rogers, G., Hawkesworth, C.J., 1989. A Geochemical Traverse across the North Chilean Andes: Evidence for Crust Generation from the Mantle Wedge. Earth and Planetary Science Letters, 91(3/4): 271-285. https://doi.org/10.1016/0012-821x(89)90003-4
|
Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Tatsumi, Y., 1982. Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan, II. Melting Phase Relations at High Pressures. Earth and Planetary Science Letters, 60(2): 305-317. https://doi.org/10.1016/0012-821x(82)90009-7
|
Taylor, S.R., McLennan, S.M., 1995. The Geochemical Evolution of the Continental Crust. Review of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262
|
Wang, G., Sun, F.Y., Li, B.L., et al., 2014. Petrography, Zircon U-Pb Geochronology and Geochemistry of the Mafic-Ultramafic Intrusion in Xiarihamu Cu-Ni Deposit from East Kunlun, with Implications for Geodynamic Setting. Earth Science Frontiers, 21(6): 381-401(in Chinese with English abstract).
|
Wang, Q., Xu, J.F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
|
Wang, W., Xiong, F.H., Ma, C.Q., et al., 2021. Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887-2902(in Chinese with English abstract).
|
Whitney, D.L., Evans, B.W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1): 185-187. https://doi.org/10.2138/am.2010.3371
|
Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003
|
Wu, F., Zhang, X.J., Zhang, Y.Q., et al., 2010. Zircon U-Pb Ages for Rhyolitic Tuffs of the Naocangjiangou Formation in the East Kulun Orogenic Belt and Their Implication. Journal of Geomechanics, 16(1): 44-50(in Chinese with English abstract).
|
Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/bf03184122
|
Xia, R., 2017. Paleo-Tethys Orogenic Process and Metallogenesis of the East Kunlun (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
|
Xia, R., Deng, J., Qing, M., et al., 2017. Petrogenesis of Ca. 240 Ma Intermediate and Felsic Intrusions in the Nan'getan: Implications for Crust-Mantle Interaction and Geodynamic Process of the East Kunlun Orogen. Ore Geology Reviews, 90: 1099-1117. https://doi.org/10.1016/j.oregeorev.2017.04.002
|
Xia, R., Wang, C.M., Qing, M., et al., 2015. Zircon U-Pb Dating, Geochemistry and Sr-Nd-Pb-Hf-O Isotopes for the Nan'getan Granodiorites and Mafic Microgranular Enclaves in the East Kunlun Orogen: Record of Closure of the Paleo-Tethys. Lithos, 234-235: 47-60. https://doi.org/10.1016/j.lithos.2015.07.018
|
Xiong, F.H., Ma, C.Q., Chen, B., et al., 2019. Intermediate-Mafic Dikes in the East Kunlun Orogen, Northern Tibetan Plateau: A Window into Paleo-Arc Magma Feeding System. Lithos, 340/341: 152-165. https://doi.org/10.1016/j.lithos.2019.05.012
|
Xiong, F.H., Ma, C.Q., Jiang, H.A., et al., 2013. Petrogenetic and Tectonic Significance of Permian Calc-Alkaline Lamprophyres, East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau. International Geology Review, 55(14): 1817-1834. https://doi.org/10.1080/00206814.2013.804683
|
Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011. LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt. Acta Petrologica Sinica, 27(11): 3350-3364(in Chinese with English abstract).
|
Yang, J.S., Wang, X.B., Shi, R.D., et al., 2004. The Dur'ngoi Ophiolite in East Kunlun, Northern Qinghai-Tibet Plateau: A Fragment of Paleo-Tethyan Oceanic Crust. Geology in China, 31(3): 225-239(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2004.03.001
|
Yang, Y.Q., 2013. Study on Geological Characteristics and Genesis of Aikengdelesite Molybdenum (Copper) Deposit, Eastern Kunlun, Qinghai Province (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
|
Yao, L., 2015. Petrogenesis of the Triassic Granitoids and Skarn Mineralization in the Qimantag Area, Qinghai Province, and Their Geodynamic Setting (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
|
Yu, J.Z., Zheng, Y.Y., Xu, R.K., et al., 2020. Zircon U-Pb Chronology, Geochemistry of Jiangjunmu Ore-Bearing Pluton, Eastern Part of East Kunlun and Their Geological Significance. Earth Science, 45(4): 1151-1167(in Chinese with English abstract).
|
Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
|
Zhang, Y.T., 2018. Research on Metallogenesis of Gold Deposits in the Wulonggou Ore Concentration Area, Central Segment of the Kunlun Mountains, Qinghai Province (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
|
Zorpi, M.J., Coulon, C., Orsini, J.B., 1991. Hybridization between Felsic and Mafic Magmas in Calc-Alkaline Granitoids: A Case Study in Northern Sardinia, Italy. Chemical Geology, 92(1-3): 45-86. https://doi.org/10.1016/0009-2541(91)90049-w
|
陈兵, 熊富浩, 马昌前, 等, 2021. 岩浆混合作用与火成岩多样性的耦合关系: 以东昆仑造山带白日其利长英质岩体为例. 地球科学, 46(6): 2057-2072. doi: 10.3799/dqkx.2020.241
|
陈国超, 裴先治, 李瑞保, 等, 2018. 东昆仑东段三叠纪岩浆混合作用: 以香加南山花岗岩基为例. 岩石学报, 34(8): 2441-2480.
|
国显正, 栗亚芝, 贾群子, 等, 2018. 东昆仑五龙沟金多金属矿集区晚二叠世-三叠纪岩浆岩年代学、地球化学及其构造意义. 岩石学报, 34(8): 2359-2379.
|
姜芷筠, 2021. 东昆仑五龙沟地区黑石山Cu-Pb-Zn矿床地质特征及矿床成因(硕士学位论文). 长春: 吉林大学.
|
孔会磊, 栗亚芝, 李金超, 等, 2021. 东昆仑希望沟橄榄辉长岩的岩石成因: 地球化学、锆石U-Pb年龄与Hf同位素制约. 中国地质, 48(1): 173-188.
|
李碧乐, 孙丰月, 于晓飞, 等, 2012. 东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究. 岩石学报, 28(4): 1163-1172.
|
李瑞保, 裴先治, 李佐臣, 等, 2012. 东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244-254.
|
李瑞保, 裴先治, 李佐臣, 等, 2018. 东昆仑东段古特提斯洋俯冲作用: 乌妥花岗岩体锆石U-Pb年代学和地球化学证据. 岩石学报, 34(11): 3399-3421.
|
李治华, 李碧乐, 王斌, 等, 2023. 东昆仑黑石山含硫化物暗色包体及宿主正长岩成因及地质意义: 年代学、矿物学、地球化学和Sr-Nd-Hf同位素证据. 岩石学报, 39(3): 742-762.
|
刘成东, 莫宣学, 罗照华, 等, 2004. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据. 科学通报, 49(6): 596-602.
|
刘建楠, 丰成友, 亓锋, 等, 2012. 青海都兰县下得波利铜钼矿区锆石U-Pb测年及流体包裹体研究. 岩石学报, 28(2): 679-690.
|
马昌前, 熊富浩, 尹烁, 等, 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555-3568.
|
毛景文, 周振华, 丰成友, 等, 2012. 初论中国三叠纪大规模成矿作用及其动力学背景. 中国地质, 39(6): 1437-1471.
|
莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414.
|
王冠, 孙丰月, 李碧乐, 等, 2014. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义. 地学前缘, 21(6): 381-401.
|
王巍, 熊富浩, 马昌前, 等, 2021. 东昆仑造山带索拉沟地区三叠纪赞岐质闪长岩的成因机制及其对古特提斯造山作用的启示. 地球科学, 46(8): 2887-2902. doi: 10.3799/dqkx.2020.270
|
吴芳, 张绪教, 张永清, 等, 2010. 东昆仑闹仓坚沟组流纹质凝灰岩锆石U-Pb年龄及其地质意义. 地质力学学报, 16(1): 44-50.
|
夏锐, 2017. 东昆仑古特提斯造山过程与金成矿作用(博士学位论文). 北京: 中国地质大学.
|
熊富浩, 马昌前, 张金阳, 等, 2011. 东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学. 岩石学报, 27(11): 3350-3364.
|
杨经绥, 王希斌, 史仁灯, 等, 2004. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳. 中国地质, 31(3): 225-239.
|
杨延乾, 2013. 青海东昆仑埃坑德勒斯特钼(铜)矿矿床地质特征及成因探讨(硕士学位论文). 长春: 吉林大学.
|
姚磊, 2015. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景(博士学位论文). 北京: 中国地质大学.
|
俞军真, 郑有业, 许荣科, 等, 2020. 东昆仑东段将军墓含矿岩体锆石U-Pb年代学、地球化学特征及其地质意义. 地球科学, 45(4): 1151-1167. doi: 10.3799/dqkx.2019.134
|
张宇婷, 2018. 青海东昆仑中段五龙沟矿集区金矿成矿作用研究(博士学位论文). 长春: 吉林大学.
|