• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 12
    Dec.  2023
    Turn off MathJax
    Article Contents
    Li Lin, Wang Bin, Sun Luyi, Wang Zhaoqi, Lu Yintao, Yang Taotao, Qian Jin, Wang Xiujuan, 2023. Characteristics and Controlling Factors of Concentrated Gas Hydrate Occurrence in Zhongjian Basin, South China Sea. Earth Science, 48(12): 4628-4640. doi: 10.3799/dqkx.2022.072
    Citation: Li Lin, Wang Bin, Sun Luyi, Wang Zhaoqi, Lu Yintao, Yang Taotao, Qian Jin, Wang Xiujuan, 2023. Characteristics and Controlling Factors of Concentrated Gas Hydrate Occurrence in Zhongjian Basin, South China Sea. Earth Science, 48(12): 4628-4640. doi: 10.3799/dqkx.2022.072

    Characteristics and Controlling Factors of Concentrated Gas Hydrate Occurrence in Zhongjian Basin, South China Sea

    doi: 10.3799/dqkx.2022.072
    • Received Date: 2021-11-24
      Available Online: 2024-01-03
    • Publish Date: 2023-12-25
    • High saturation gas hydrate-bearing layers is the favorable target for gas hydrate exploration and development. To identify and estimate gas hydrate-bearing layers, it uses 3D seismic data which is reprocessed by broadband wave impedance inversion, attribute analysis and the calculation of base gas hydrate stability zone to study the characteristics of the bottom simulating reflector (BSR) and gas hydrate occurrence and accumulation in the Zhongjian basin. (1) The characteristics of BSR in this area is slightly different from that found in the gas hydrate drilling area, northern South China Sea. The BSRs identified in this basin are widely distributed with continuous reflections occurred in the fine-grain sediments. The BSR amplitude is particularly strong and continuous where the fault reaches the gas hydrate stability zone. (2) The saturation of gas hydrate-bearing layers is about 30%-40% of the pore space with regional high value. The gas hydrate layer has the same polarity with the seabed reflection and is characterized by continuous and strong amplitude reflections. (3) The gas hydrate-bearing layers are occurred above different depths of the BSR which is controlled by local faults and is affected by sedimentation and tectonic movements.

       

    • loading
    • Boswell, R., Shipp, C., Reichel, T., et al., 2016. Prospecting for Marine Gas Hydrate Resources. Interpretation, 4(1): SA13-SA24. https://doi.org/10.1190/int-2015-0036.1
      Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
      Chen, F., Su, X., Lu, H. F., et al., 2013. Relations between Biogenic Component (Foraminifera) and Highly Saturated Gas Hydrates Distribution from Shenhu Area, Northern South China Sea. Earth Science, 38(5): 907-915(in Chinese with English abstract).
      Collett, T. S., Riedel, M., Cochran, J. R., et al., 2008. Indian Continental Margin Gas Hydrate Prospects Results of the Indian National Gas Hydrate Program (NGHP) Expedition 01. Proceedings of the 6th International Conference on Gas Hydrates. Vancouver, British Columbia, Canada. https://doi.org/10.7916/d8-nf9w-cz91
      Ding, W. W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-up to Seafloor Spreading. Earth Science, 46(3): 790-800(in Chinese with English abstract).
      Flower, M., Tamaki, K., Hoang, N., 1998. Mantle Extrusion: A Model for Dispersed Volcanism and DUPAL-Like Asthenosphere in East Asia and the Western Pacific. In: Flower, M. F. J., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington, D. C., 67-88. https://doi.org/10.1029/gd027p0067
      Gao, H. F., Wang, Y. T., Guo, L. H., 2007. Petroleum Geological Conditions and Prospects in the Zhongjiannan Basin in the Western South China Sea. Geology in China, 34(4): 592-598(in Chinese with English abstract).
      Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4
      Hein, J. R., Scholl, D. W., Barron, J. A., et al., 1978. Diagenesis of Late Cenozoic Diatomaceous Deposits and Formation of the Bottom Simulating Reflector in the Southern Bering Sea. Sedimentology, 25(2): 155-181. doi: 10.1111/j.1365-3091.1978.tb00307.x
      Hu, G. W., Li, C. F., Ye, Y. G., et al., 2014. Observation of Gas Hydrate Distribution in Sediment Pore Space. Chinese Journal of Geophysics, 57(5): 1675-1682(in Chinese with English abstract).
      Jin, J. P., Wang, X. J., Guo, Y. Q., et al., 2020. Geological Controls on the Occurrence of Recently Formed Highly Concentrated Gas Hydrate Accumulations in the Shenhu Area, South China Sea. Marine and Petroleum Geology, 116: 104294. https://doi.org/10.1016/j.marpetgeo.2020.104294
      Kang, D. J., Liang, J. Q., Kuang, Z. G., et al., 2018. Application of Elemental Capture Spectroscopy Logging in Hydrate Reservoir Evaluation in the Shenhu Sea Area. Natural Gas Industry, 38(12): 54-60(in Chinese with English abstract).
      Keller, M. A., Isaacs, C. M., 1985. An Evaluation of Temperature Scales for Silica Diagenesis in Diatomaceous Sequences Including a New Approach Based on the Miocene Monterey Formation, California. Geo-Marine Letters, 5(1): 31-35. https://doi.org/10.1007/bf02629794
      Lai, H. F., Fang, Y. X., Kuang, Z. G., et al., 2021. Geochemistry, Origin and Accumulation of Natural Gas Hydrates in the Qiongdongnan Basin, South China Sea: Implications from Site GMGS5-W08. Marine and Petroleum Geology, 123: 104774. https://doi.org/10.1016/j.marpetgeo.2020.104774
      Lee, G. H., Kim, H. J., Jou, H. T., et al., 2003. Opal-A/Opal-CT Phase Boundary Inferred from Bottom-Simulating Reflectors in the Southern South Korea Plateau, East Sea (Sea of Japan). Geophysical Research Letters, 30(24): 2238. https://doi.org/10.1029/2003gl018670
      Li, F. C., Sun, Z., Yang, H. F., et al., 2020. Continental Interior and Edge Breakup at Convergent Margins Induced by Subduction Direction Reversal: A Numerical Modeling Study Applied to the South China Sea Margin. Tectonics, 39(11): e2020TC006409. https://doi.org/10.1029/2020tc006409
      Li, J. F., Ye, J. L., Qin, X. W., et al., 2018. The First Offshore Natural Gas Hydrate Production Test in South China Sea. China Geology, 1(1): 5-16. https://doi.org/10.31035/cg2018003
      Li, L., Wang, B., Lei, C., et al., 2021. Tectonic Framework in the Xisha Area and Its Differential Evolution. Earth Science, 46(9): 3321-3337(in Chinese with English abstract).
      Li, W., Cook, A., Daigle, H., et al., 2019. Factors Controlling Short-Range Methane Migration of Gas Hydrate Accumulations in Thin Coarse-Grained Layers. Geochemistry, Geophysics, Geosystems, 20(8): 3985-4000. https://doi.org/10.1029/2019gc008405
      Liang, J. Q., Zhang, W., Lu, J., et al., 2019. Geological Occurrence and Accumulation Mechanism of Natural Gas Hydrates in the Eastern Qiongdongnan Basin of the South China Sea: Insights from Site GMGS5-W9-2018. Marine Geology, 418: 106042. https://doi.org/10.1016/j.margeo.2019.106042
      Liu, J., Yang, R., Zhang, J. H., et al., 2019. Gas Hydrate Accumulation Conditions in the Huaguang Depression of Qiongdongnan Basin and Prediction of Favorable Zones. Marine Geology & Quaternary Geology, 39(1): 134-142(in Chinese with English abstract).
      Lu, Y. T., Luan, X. W., Lyu, F. L., et al., 2017. Seismic Evidence and Formation Mechanism of Gas Hydrates in the Zhongjiannan Basin, Western Margin of the South China Sea. Marine and Petroleum Geology, 84: 274-288. https://doi.org/10.1016/j.marpetgeo.2017.04.005
      Luan, X. W., Wang, J., Liu, H., et al., 2021. A Discussion on Tethys in Northern Margin of South China Sea. Earth Science, 46(3): 866-884(in Chinese with English abstract).
      Qian, J., Wang, X. J., Collett, T. S., et al., 2018. Downhole Log Evidence for the Coexistence of Structure II Gas Hydrate and Free Gas below the Bottom Simulating Reflector in the South China Sea. Marine and Petroleum Geology, 98: 662-674. https://doi.org/10.1016/j.marpetgeo.2018.09.024
      Sloan, E. D., Koh, C. A., 2017. Clathrate Hydrates of Natural Gases(3rd Edition). CRC Press, Boca Raton, America, 10-18. https://doi.org/10.1201/9781420008494
      Sun, Q. L., Wu, S. G., Cartwright, J., et al., 2013. Focused Fluid Flow Systems of the Zhongjiannan Basin and Guangle Uplift, South China Sea. Basin Research, 25(1): 97-111. https://doi.org/10.1111/j.1365-2117.2012.00551.x
      Sun, Z., Li, F. C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789(in Chinese with English abstract).
      Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin: Special Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116
      Tréhu, A. M., Ruppel, C., Holland, M., et al., 2006. Gas Hydrates in Marine Sediments: Lessons from Scientific Ocean Drilling. Oceanography, 19(4): 124-142. https://doi.org/10.5670/oceanog.2006.11
      Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs. Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135
      Wang, X. J., Collett, T. S., Lee, M. W., et al., 2014. Geological Controls on the Occurrence of Gas Hydrate from Core, Downhole Log, and Seismic Data in the Shenhu Area, South China Sea. Marine Geology, 357: 272-292. https://doi.org/10.1016/j.margeo.2014.09.040
      Wang, X. J., Jin, J. P., Guo, Y. Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057 (in Chinese with English abstract).
      Wang, X. J., Liu, B., Qian, J., et al., 2018. Geophysical Evidence for Gas Hydrate Accumulation Related to Methane Seepage in the Taixinan Basin, South China Sea. Journal of Asian Earth Sciences, 168: 27-37. https://doi.org/10.1016/j.jseaes.2017.11.011
      Wang, X. J., Qian, J., Collett, T. S., et al., 2016. Characterization of Gas Hydrate Distribution Using Conventional 3D Seismic Data in the Pearl River Mouth Basin, South China Sea. Interpretation, 4(1): SA25-SA37. https://doi.org/10.1190/int-2015-0020.1
      Xu, Z. Y., Wang, J., Yao, Y. J., et al., 2021. The Temporal-Spatial Distribution and Deep Structure of the Zhongnan-Liyue Fault Zone in the North of the South China Sea Basin. Earth Science, 46(3): 942-955(in Chinese with English abstract).
      Yang, S. X., Liang, J. Q., Lu, J. A., et al., 2017. New Understandings on Characteristics and Controlling Factors of Gas Hydrate Reservoirs in Shenhu Area on Northern Slope of South China Sea. Earth Science Frontiers, 24(2): 1-14 (in Chinese with English abstract).
      Ye, J. L., Wei, J. G., Liang, J. Q., et al., 2019. Complex Gas Hydrate System in a Gas Chimney, South China Sea. Marine and Petroleum Geology, 104: 29-39. https://doi.org/10.1016/j.marpetgeo.2019.03.023
      Zhang, C. M., Sun, Z., Zhao, M. H., et al., 2022. Crustal Structure and Tectono-Magmatic Evolution of Northern South China Sea. Earth Science, 47(7): 2337-2353(in Chinese with English abstract).
      Zhang, G. X., Liang, J. Q., Lu, J. A., et al., 2015. Geological Features, Controlling Factors and Potential Prospects of the Gas Hydrate Occurrence in the East Part of the Pearl River Mouth Basin, South China Sea. Marine and Petroleum Geology, 67: 356-367. https://doi.org/10.1016/j.marpetgeo.2015.05.021
      陈芳, 苏新, 陆红锋, 等, 2013. 南海神狐海域有孔虫与高饱和度水合物的储存关系. 地球科学, 38(5): 907-915. doi: 10.3799/dqkx.2013.089
      丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
      高红芳, 王衍棠, 郭丽华, 2007. 南海西部中建南盆地油气地质条件和勘探前景分析. 中国地质, 34(4): 592-598.
      胡高伟, 李承峰, 业渝光, 等, 2014. 沉积物孔隙空间天然气水合物微观分布观测. 地球物理学报, 57(5): 1675-1682.
      康冬菊, 梁金强, 匡增桂, 等, 2018. 元素俘获能谱测井在神狐海域天然气水合物储层评价中的应用. 天然气工业, 38(12): 54-60.
      李林, 王彬, 雷超, 等, 2021. 西沙海域盆地构造格局及其差异演化过程分析. 地球科学, 46(9): 3321-3337. doi: 10.3799/dqkx.2021.098
      刘杰, 杨睿, 张金华, 等, 2019. 琼东南盆地华光凹陷天然气水合物成藏条件及有利区带预测. 海洋地质与第四纪地质, 39(1): 134-142.
      栾锡武, 王嘉, 刘鸿, 等, 2021. 关于南海北部特提斯的讨论. 地球科学, 46(3): 866-884. doi: 10.3799/dqkx.2020.332
      孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      王秀娟, 靳佳澎, 郭依群, 等, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321
      徐子英, 汪俊, 姚永坚, 等, 2021. 中南-礼乐断裂带在南海海盆北部的时空展布与深部结构. 地球科学, 46(3): 942-955. doi: 10.3799/dqkx.2020.400
      杨胜雄, 梁金强, 陆敬安, 等, 2017. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识. 地学前缘, 24(4): 1-14.
      张翠梅, 孙珍, 赵明辉, 等, 2022. 南海北部陆缘结构及构造-岩浆演化. 地球科学, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(1)

      Article views (764) PDF downloads(73) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return