• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 11
    Nov.  2023
    Turn off MathJax
    Article Contents
    Pang Xiaojun, Du Xiaofeng, Wang Guanmin, Wang Qingbin, Zhang Can, 2023. Genetic Mechanism and Pore Evolution of High-Quality Glutenite Reservoirs of Deep Kongdian Formation in BZ19-6, Bohai Sea. Earth Science, 48(11): 4153-4174. doi: 10.3799/dqkx.2022.080
    Citation: Pang Xiaojun, Du Xiaofeng, Wang Guanmin, Wang Qingbin, Zhang Can, 2023. Genetic Mechanism and Pore Evolution of High-Quality Glutenite Reservoirs of Deep Kongdian Formation in BZ19-6, Bohai Sea. Earth Science, 48(11): 4153-4174. doi: 10.3799/dqkx.2022.080

    Genetic Mechanism and Pore Evolution of High-Quality Glutenite Reservoirs of Deep Kongdian Formation in BZ19-6, Bohai Sea

    doi: 10.3799/dqkx.2022.080
    • Received Date: 2021-12-02
      Available Online: 2023-11-30
    • Publish Date: 2023-11-25
    • In recent years, a large amount of oil and gas was discovered for the first time above the Archean large metamorphic granite buried hill condensate gas reservoir in the Bozhong 19-6 structure in the deep (buried depth greater than 3 500 m) Kongdian Formation glutenite reservoir. But it is characterized with larger reservoir difference.In order to identify the causes of deep conglomerate reservoir quality, using analyses of thin section casting and test data, particle size, conventional physical properties, such as inclusion, combined with burial history analysis, quantitative analysis of the physical properties of deep glutenite reservoirs in Bozhong 19-6 and its surroundings of the Bohai Sea was carried out, and the main controlling factors for the development of high-quality glutenite reservoirs in the Kongdian Formation were clarified. It is found that: (1) The deep Kongdian Formation in the study area has developed fan delta glutenite reservoirs with a buried depth greater than 3 500-4 200 m. It is a deep glutenite reservoir with poor physical properties, mainly low porosity and low permeability, and the diagenesis stage is in the middle diagenesis from A2 to B stage, and dissolution pores are developed. (2) Potassium-rich feldspar framework particles, atmospheric fresh water leaching, organic acid dissolution, overpressure and crack are the main controlling factors for the development of high-quality glutenite reservoirs in the Kongdian Formation in the study area. (3) The Kongdian Formation glutenite reservoirs have mainly experienced atmospheric freshwater enhancement-early diagenesis long-term, rapid burial, rapid compaction-reduction-medium diagenesis A1 mid-to-long-term, rapid burial, slow compaction-reduction, organic acid and ultra pressure massive dissolution to increase pores, first filling of oil and gas-mid-diagenetic A2 or B period, short-term, rapid burial, slow cementation, pore reduction, (or formation of corrosion cracks) and large-scale oil and gas filling. (4) However, the diagenetic evolution stages and pore evolution strength experienced by different structures are obviously different. The Kongdian Formation glutenite reservoir in Bozhong 19-6 structure has experienced early diagenesis → middle diagenesis A1 → middle diagenesis A2 to B, corresponding The porosity of Bozhong has undergone an evolution process of 32.6%→17.3%→12.6%→10.6%, the reduction in porosity due to compaction and cementation is 22.0%, and the total reduction in porosity is 67.6%, respectively; while Bozhong 25-1 tectonic glutenite reservoirs mainly experienced early diagenesis → middle diagenesis A1 → middle diagenetic A2, and the corresponding porosity experienced an evolution process of 32.8%→19.9%→14.2%→13.2%, which suffered compaction and cementation. The porosity reduction is 19.6%, and the total porosity reduction rate is 59.7%. (5) Compared with the BZ 19-6 structure, the Kongdian Formation glutenite reservoir compaction in the BZ 25-1 structure is relatively weak, the overpressure is stronger, and the dissolution is stronger, which are the main factors for the relatively good porosity of the structure. And the coarse-grained and intragranular dissolution pores-fractures formed by the late strong compaction are the main factors for the relatively high permeability of the BZ 19-6 structural glutenite reservoir.

       

    • loading
    • Athy, L. F., 1930. Density, Porosity and Compaction of Sedimentary Rocks. AAPG Bulletin, 14(1): 1-24. https://doi.org/10.1306/3D93289E-16B1-11D7-8645000102C1856D
      Du, X. F., Wang, Q. M., Zhao, M., et al., 2020. Sedimentary Characteristics and Mechanism Analysis of a Large-Scale Fan Delta System in the Paleocene Kongdian Formation, Southwestern Bohai Sea, China. Interpretation, 8(2): SF81-SF94. https://doi.org/10.1190/int-2019-0143.1
      Duan, W., Luo, C.F., Liu, J.Z., et al., 2015. Effect of Overpressure Formation on Reservoir Diagenesis and Its Geological Significance to LD Block of Yinggehai Basin. Earth Science, 40(9): 1517-1528 (in Chinese with English abstract).
      Guo, L. L., Cheng, H. D., Huang, X. B., et al., 2020. Quantitative Analysis on Pore Evolution in Feldspar-Rich Coarse Clastic Sandstone: A Case Study of Es2 in the North Part of Liaodong Uplift. Oil & Gas Geology, 41(4): 874-883 (in Chinese with English abstract).
      He, D.F., Ma, Y.S., Liu, B., et al., 2019. Main Advances and Key Issues for Deep-Seated Exploration in Petroliferous Basins in China. Earth Science Frontiers, 26(1): 1-12 (in Chinese with English abstract).
      Hou, M.C., Cao, H.Y., Li, H.Y., et al., 2019. Characteristics and Controlling Factors of Deep Buried-Hill Reservoirs in the BZ19-6 Structural Belt, Bohai Sea Area. Natural Gas Industry, 39(1): 33-44 (in Chinese with English abstract).
      Jia, H.S., Li, Z.P., Zhang, W., et al., 2020. Analysis of Characteristics and Main Controlling Factors of Glutenite Reservoir of E1-2k2 Formation in B Gas Field of Bohai Sea. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 22(3): 44-48 (in Chinese with English abstract).
      Li, Y., Chang, X. C., Yin, W., et al., 2017. Quantitative Impact of Diagenesis on Reservoir Quality of the Triassic Chang 6 Tight Oil Sandstones, Zhenjing Area, Ordos Basin, China. Marine and Petroleum Geology, 86: 1014-1028. https://doi.org/10.1016/j.marpetgeo.2017.07.005
      Liao, J.H., Wu K.Q., Er, C., 2022. Deep Reservoir Characteristics and Effective Reservoir Control Factors in Baiyun Sag of Pearl River Mouth Basin. Earth Science, 47(7): 2454-2467.
      Lin, H.M., Liu, P., Wang, T.D., et al., 2019. Diagenetic Evolution Mechanism of Deep Glutenite Reservoirs Based on Differences in Parent Rock Types: A Case Study of Lower Submember of Member 3 of Shahejie Formation in Chezhen Sag, Bohai Bay Basin. Acta Petrolei Sinica, 40(10): 1180-1191 (in Chinese with English abstract).
      Liu, Q.H., Zhu, H.T., Du, X.F., et al., 2020. Development and Hotspots of Sedimentary Response of Glutenite in the Offshore Bohai Bay Basin. Earth Science, 45(5): 1676-1705 (in Chinese with English abstract).
      Lu, H., Wang, Q.B., Niu, C.M., et al., 2020. Meteoric Leaching Evidences, Diagenetic Model and Its Geology Significance in Mixed Rock of Steep Slope Zone of Shijiutuo Uplift. Earth Science, 45(10): 3721-3730 (in Chinese with English abstract).
      Pang, X.J., Niu, C.M., Du, X.F., et al., 2020. Quantitative Characterization of Differences in Glutenite Reservoir in the Member 1 and 2 of Shahejie Formation in the Northeastern Margin of Shijiutuo Uplift, Bohai Sea. Acta Petrolei Sinica, 41(9): 1073-1088 (in Chinese with English abstract).
      Scherer, M., 1987. Parameters Influencing Porosity in Sandstones: A Model for Sandstone Porosity Prediction. AAPG Bulletin, 71(5): 485-491. https://doi.org/10.1306/703C80FB-1707-11D7-8645000102C1865D
      Shi, H.S., Wang, Q.B., Wang, J., et al., 2019. Discovery and Exploration Significance of Large Condensate Gas Fields in BZ19-6 Structure in Deep Bozhong Sag. China Petroleum Exploration, 24(1): 36-45 (in Chinese with English abstract).
      Wang, G. W., Hao, F., Chang, X. C., et al., 2017. Quantitative Analyses of Porosity Evolution in Tight Grainstones: A Case Study of the Triassic Feixianguan Formation in the Jiannan Gas Field, Sichuan Basin, China. Marine and Petroleum Geology, 86: 259-267. https://doi.org/10.1016/j.marpetgeo.2017.05.021
      Wang, Q.B., Niu, C.M., Liu, X.J., et al., 2019. Hydrocarbon Charging and Reservoir Densification of the Deep-Seated Glutenite Gas Reservoirs in the Bozhong Sag. Natural Gas Industry, 39(5): 25-33 (in Chinese with English abstract).
      Wang, Q.M., Du, X.F., Guan, D.Y., et al., 2021. Differential Tectonic Activities in Paleocene-Eocene and Its Bearing on the Evolution of Sedimentary Fillings in the Southwest Bozhong Sag. Marine Geology Frontiers, 37(11): 30-41 (in Chinese with English abstract).
      Wang, T., Zhu, X.M., Zhang, Z.L., et al., 2020. Quantitative Pore Evolution Model of Sandstone Reservoirs for Member 3 of Shahejie Formation in the Northern Subsag of Laizhouwan Sag. Acta Petrolei Sinica, 41(6): 671-690 (in Chinese with English abstract).
      Xiao, M., Wu, S.T., Yuan, X.J., et al., 2021. Conglomerate Reservoir Pore Evolution Characteristics and Favorable Area Prediction: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. Journal of Earth Science, 32(4): 998-1010. https://doi.org/10.1007/s12583-020-1083-6
      Xu, C. G., Yu, H. B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19-6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 27-40 (in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30003-5
      Xu, F. H., Xu, G. S., Liu, Y., et al., 2020. Factors Controlling the Development of Tight Sandstone Reservoirs in the Huagang Formation of the Central Inverted Structural Belt in Xihu Sag, East China Sea Basin. Petroleum Exploration and Development, 47(1): 101-113 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60009-X
      Xu, K., Zhang, H., Ju, W., et al., 2023. Effective Fracture Distribution and Its Influence on Natural Gas Productivity of Ultra-Deep Reservoir in Bozi-X Block of Kuqa Depression. Earth Science, 48(7): 2489-2505 (in Chinese with English abstract).
      Xu, Y.H., Yang, X.H., Mei, L.F., 2020. Reservoir Characteristics and Main Control Factors of Conglomerate Reservoir of El3 in the Northwest Steep Slope Zone of Weixinan Depression. Earth Science, 45(5): 1706-1721 (in Chinese with English abstract).
      You, L., Fan, C.W., Wu, S.J., et al., 2021. Genesis of Carbonate Cement and Its Relationship with Fluid Activity in the Ledong Area, Yinggehai Basin. Acta Geologica Sinica, 95(2): 578-587 (in Chinese with English abstract).
      You, L., Zhao, Z.J., Dai, L., et al., 2019. Reservoirs Characteristics and Formation Mechanism of High Temperature and Overpressure Reservoirs from Miocene in Ying-Qiong Basin. Earth Science, 44(8): 2654-2664 (in Chinese with English abstract).
      Zhang, Q., Zhu, X.M., Mao, L., et al., 2021. Pore Evolution and Genesis of Secondary Pores in the Paleogene Dainan Formation, Jinhu Sag, Subei Basin. Earth Science Frontiers, 28(1): 190-201 (in Chinese with English abstract).
      Zhang, T.Y., Hao, P., 2020. Fine Characterization of the Reservoir Space in Deep Ultra-Low Porosity and Ultra-Low Permeability Glutenite in Bozhong Sag. Bulletin of Geological Science and Technology, 39(4): 117-124 (in Chinese with English abstract).
      Zhu, N., Cao, Y.C., Xi, K.L., et al., 2019. Diagenesis and Physical Properties Evolution of Sandy Conglomerate Reservoirs: A Case Study of Triassic Baikouquan Formation in Northern Slope Zone of Mahu Despression. Journal of China University of Mining & Technology, 48(5): 1102-1118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201905018.htm
      段威, 罗程飞, 刘建章, 等, 2015. 莺歌海盆地犔犇区块地层超压对储层成岩. 地球科学, 40(9): 1517-1528. doi: 10.3799/dqkx.2015.136
      郭龙龙, 陈洪德, 黄晓波, 等, 2020. 富长石粗碎屑砂岩孔隙演化定量分析: 以渤海湾盆地辽东凸起北段沙河街组二段为例. 石油与天然气地质, 41(4): 874-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004020.htm
      何登发, 马永生, 刘波, 等, 2019. 中国含油气盆地深层勘探的主要进展与科学问题. 地学前缘, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901002.htm
      侯明才, 曹海洋, 李慧勇, 等, 2019. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素. 天然气工业, 39(1): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901005.htm
      贾海松, 李振鹏, 张汶, 等, 2020. 渤海B气田孔店组砂砾岩储层特征及主控因素分析. 重庆科技学院学报(自然科学版), 22(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSG202003013.htm
      廖计华, 吴克强, 耳闯, 2022. 珠江口盆地白云凹陷深层储层特征与有效储层控制因素. 地球科学, 47(7): 2454-2467. doi: 10.3799/dqkx.2022.017
      林红梅, 刘鹏, 王彤达, 等, 2019. 基于母岩类型差异的深层砂砾岩储集体成岩演化机制: 以渤海湾盆地车镇凹陷沙河街组三段下亚段为例. 石油学报, 40(10): 1180-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201910004.htm
      刘强虎, 朱红涛, 杜晓峰, 等, 2020. 渤海海域砂砾岩体沉积响应进展及热点. 地球科学, 45(5): 1676-1705. doi: 10.3799/dqkx.2020.010
      卢欢, 王清斌, 牛成民, 等, 2020. 湖相混积岩系同沉积淋滤作用识别标志与优质储层形成机理: 以石臼坨凸起陡坡带Q29和Q36构造沙一、二段为例. 地球科学, 45(10): 3721-3730. doi: 10.3799/dqkx.2020.175
      庞小军, 牛成民, 杜晓峰, 等, 2020. 渤海海域石臼坨凸起东北缘沙河街组一段+二段砂砾岩储层差异定量表征. 石油学报, 41(9): 1073-1088. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202009006.htm
      施和生, 王清斌, 王军, 等, 2019. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义. 中国石油勘探, 24(1): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201901006.htm
      王清斌, 牛成民, 刘晓健, 等, 2019. 渤中凹陷深层砂砾岩气藏油气充注与储层致密化. 天然气工业, 39(5): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201905003.htm
      王启明, 杜晓峰, 官大勇, 等, 2021. 渤中凹陷西南部古新世‒始新世构造差异活动及沉积充填演化. 海洋地质前沿, 37(11): 30-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202111004.htm
      王彤, 朱筱敏, 张自力, 等, 2020. 莱州湾凹陷北洼沙河街组三段砂岩储层孔隙定量演化模式. 石油学报, 41(6): 671-690. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202006005.htm
      徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm
      徐昉昊, 徐国盛, 刘勇, 等, 2020. 东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层控制因素. 石油勘探与开发, 47(1): 98-109. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001010.htm
      徐珂, 张辉, 鞠玮, 等, 2023. 库车坳陷博孜X区块超深储层有效裂缝分布规律及对天然气产能的影响. 地球科学, 48(7): 2489-2505. doi: 10.3799/dqkx.2022.227
      徐燕红, 杨香华, 梅廉夫, 2020. 涠西南凹陷西北陡坡带流三段砂砾岩储层特征与主控因素. 地球科学, 45(5): 1706-1721. doi: 10.3799/dqkx.2019.174
      尤丽, 范彩伟, 吴仕玖, 等, 2021. 莺歌海盆地乐东区储层碳酸盐胶结物成因机理及与流体活动的关系. 地质学报, 95(2): 578-587. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102020.htm
      尤丽, 招湛杰, 代龙, 等, 2019. 莺‒琼盆地中新统高温超压储层特征及形成机制. 地球科学, 44(8): 2654-2664. doi: 10.3799/dqkx.2019.108
      张琴, 朱筱敏, 毛凌, 等, 2021. 苏北盆地金湖凹陷古近系戴南组孔隙演化及次生孔隙成因分析. 地学前缘, 28(1): 190-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101020.htm
      张铜耀, 郝鹏, 2020. 渤中凹陷深层特低孔特低渗砂砾岩储层储集空间精细表征. 地质科技通报, 39(4): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004015.htm
      朱宁, 操应长, 葸克来, 等, 2019. 砂砾岩储层成岩作用与物性演化: 以玛湖凹陷北斜坡区三叠系百口泉组为例. 中国矿业大学学报, 48(5): 1102-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201905018.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(3)

      Article views (802) PDF downloads(74) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return