• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 12
    Dec.  2023
    Turn off MathJax
    Article Contents
    Liu Guimin, Zhang Bo, Wang Li, Wu Xiaodong, 2023. Permafrost Region and Permafrost Area in Globe and China. Earth Science, 48(12): 4689-4698. doi: 10.3799/dqkx.2022.083
    Citation: Liu Guimin, Zhang Bo, Wang Li, Wu Xiaodong, 2023. Permafrost Region and Permafrost Area in Globe and China. Earth Science, 48(12): 4689-4698. doi: 10.3799/dqkx.2022.083

    Permafrost Region and Permafrost Area in Globe and China

    doi: 10.3799/dqkx.2022.083
    • Received Date: 2022-01-15
      Available Online: 2024-01-03
    • Publish Date: 2023-12-25
    • Global warming will lead to the thaw of permafrost degradation. The permafrost degradation can cause serious damage to engineering and infrastructure in permafrost regions, it can also change water, energy and carbon cycle between the land and the atmosphere and further create a feedback to climate change. Most permafrost is the ground below the earth's surface and thus is difficult to be detected. There are many literatures used the terms of permafrost region and permafrost area ambiguously, and the incorrectly use of the two terms can lead serious mistakes in permafrost change and carbon budget calculation. Recently, there are many advances in remote sensing and modelling of permafrost. Here it systematically reviews the literatures to clarify the area of permafrost regions and the actual permafrost area in the world as well as in China. The most recent studies show that the permafrost region in the northern hemisphere is about 21×106 km2, and the actual permafrost area is about 14×106 km2. For the Qinghai-Tibetan plateau in China, the permafrost region occupies an area of about 1.50×106 km2, and the actual permafrost area is about 1.06×106 km2. More data are required to quantify the actual permafrost area in other permafrost regions in China.

       

    • loading
    • Aalto, J., Karjalainen, O., Hjort, J., et al., 2018. Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness. Geophysical Research Letters, 45(10): 4889-4898. https://doi.org/10.1029/2018gl078007
      Arias, P. A., Bellouin, N., Coppola, E., et al., 2021.2021: Technical Summary. In: Masson-Delmotte, V., ed., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
      Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost is Warming at a Global Scale. Nature Communications, 10: 264. https://doi.org/10.1038/s31467-018-08240-4
      Burke, E. J., Jones, C. D., Koven, C. D., 2013. Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach. Journal of Climate, 26(14): 4897-4909. https://doi.org/10.1175/jcli-d-12-00550.1
      Cao, B., Zhang, T. J., Wu, Q. B., et al., 2019. Permafrost Zonation Index Map and Statistics over the Qinghai-Tibet Plateau Based on Field Evidence. Permafrost and Periglacial Processes, 30(3): 178-194. https://doi.org/10.1002/ppp.2006
      Cheng, G. D., 1994. Progress of Glaciology and Geocrology in China in the Last 10 Years and Prospect. Acta Geographica Sinica, 49(Suppl. 1): 589-600(in Chinese with English abstract).
      Dobinski, W., 2011. Permafrost. Earth Science Reviews, 108(3-4): 158-169. https://doi.org/10.1016/j.earscirev.2011.06.007
      Frederick, J. M., Buffett, B. A., 2014. Taliks in Relict Submarine Permafrost and Methane Hydrate Deposits: Pathways for Gas Escape under Present and Future Conditions. Journal of Geophysical Research: Earth Surface, 119(2): 106-122. https://doi.org/10.1002/2013jf002987
      Frederick, J. M., Buffett, B. A., 2015. Effects of Submarine Groundwater Discharge on the Present-Day Extent of Relict Submarine Permafrost and Gas Hydrate Stability on the Beaufort Sea Continental Shelf. Journal of Geophysical Research: Earth Surface, 120(3): 417-432. https://doi.org/10.1002/2014jf003349
      Gruber, S., 2012. Derivation and Analysis of a High-Resolution Estimate of Global Permafrost Zonation. The Cryosphere, 6(1): 221-233. https://doi.org/10.5194/tc-6-221-2012
      Günther, F., Overduin, P. P., Sandakov, A. V., et al., 2013. Short- and Long-Term Thermo-Erosion of Ice-Rich Permafrost Coasts in the Laptev Sea Region. Biogeosciences, 10(6): 4297-4318. https://doi.org/10.5194/bg-10-4297-2013
      Huang, F., Xu, J. F., Wang, B. D., et al., 2020. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785-2804(in Chinese with English abstract).
      IPCC, 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/srocc/download/
      Jin, H. J., Yu, Q. H., Lü, L. Z., et al., 2007. Degradation of Permafrost in the Xing'anling Mountains, Northeastern China. Permafrost and Periglacial Processes, 18(3): 245-258. https://doi.org/10.1002/ppp.589
      Koven, C. D., Ringeval, B., Friedlingstein, P., et al., 2011. Permafrost Carbon-Climate Feedbacks Accelerate Global Warming. Proceedings of the National Academy of Sciences of the United States of America, 108(36): 14769-14774. https://doi.org/10.1073/pnas.1103910108
      Lantuit, H., Overduin, P. P., Couture, N., et al., 2012. The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. Estuaries & Coasts, , 35(2): 383-400. https://doi.org/10.1007/s12237-010-9362-6
      Li, X. B., Ji, J. L., Cao, Z. M., et al., 2021. The Climatic Significance of the Color of the Paleo-Neogene Fluvial and Lacustrine Sediments in the Northern Qaidam Basin. Earth Science, 46(9): 3278-3289(in Chinese with English abstract).
      Liu, S., Wu, T., Wang, X., et al., 2020. Changes in the Global Cryosphere and Their Impacts: A Review and New Perspective. Sciences in Cold and Arid Regions, 12(6): 343-354. https://doi.org/10.3724/sp.j.1226.2020.00343
      Luo, D. L., Jin, H. J., Lin, L., et al., 2012. Degradation of Permafrost and Cold-Environments on the Interior and Eastern Qinghai Plateau. Journal of Glaciology and Geocryology, 34(3): 538-546(in Chinese with English abstract).
      Ma, Q., Jin, H. J., 2020. Impacts of Climate Warming on Soil Organic Carbon Pools in Permafrost Regions. Journal of Glaciology and Geocryology, 42(1): 91-10(in Chinese with English abstract).
      Maslakov, A., Kraev, G., 2016. Erodibility of Permafrost Exposures in the Coasts of Eastern Chukotka. Polar Science, 10(3): 374-381. https://doi.org/10.1016/j.polar.2016.04.009
      Mu, C. C., Abbott, B. W., Zhao, Q., et al., 2017. Permafrost Collapse Shifts Alpine Tundra to a Carbon Source But Reduces N2O and CH4 Release on the Northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44(17): 8945-8952. https://doi.org/10.1002/2017gl074338
      Mu, C. C., Zhang, T. J., Wu, Q. B., et al., 2015. Carbon and Nitrogen Properties of Permafrost over the Eboling Mountain in the Upper Reach of Heihe River Basin, Northwestern China. Arctic, Antarctic, and Alpine Research, 47(2): 203-211. https://doi.org/10.1657/aaar00c-13-095
      Ni, J. E., Wu, T. H., Zhu, X. F., et al., 2021. Simulation of the Present and Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical and Machine Learning Models. Journal of Geophysical Research: Atmospheres, 126(2): e2020JD033402. https://doi.org/10.1029/2020jd033402
      Niu, F. J., Cheng, G. D., Ni, W. K., et al., 2005. Engineering-Related Slope Failure in Permafrost Regions of the Qinghai-Tibet Plateau. Cold Regions Science and Technology, 42(3): 215-225. https://doi.org/10.1016/j.coldregions.2005.02.002
      Obu, J., 2021. How Much of the Earth's Surface is Underlain by Permafrost? Journal of Geophysical Research: Earth Surface, 126(5): e2021JF006123. https://doi.org/10.1029/2021jf006123
      Obu, J., Westermann, S., Bartsch, A., et al., 2019. Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000—2016 at 1 km2 Scale. Earth-Science Reviews, 193: 299-316. https://doi.org/10.1016/j.earscirev.2019.04.023
      Peng, C. Y., Sheng, Y., Wu, J. C., et al., 2021. Simulation of the Permafrost Distribution in the Qilian Mountains. Journal of Glaciology and Geocryology, 43(1): 158-169(in Chinese with English abstract).
      Qiu, G. Q., Cheng, G. D., 1995. Permafrost in China: Past and Persent. Quaternary Sciences, 15(1)13-22(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.1995.01.002
      Ran, Y. H., Li, X., Cheng, G. D., et al., 2012. Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafrost and Periglacial Processes, 23(4): 322-333. https://doi.org/10.1002/ppp.1756
      Riseborough, D., Shiklomanov, N., Etzelmüller, B., et al., 2008. Recent Advances in Permafrost Modelling. Permafrost and Periglacial Processes, 19(2): 137-156. https://doi.org/10.1002/ppp.615
      Sayedi, S. S., Abbott, B. W., Thornton, B. F., et al., 2020. Subsea Permafrost Carbon Stocks and Climate Change Sensitivity Estimated by Expert Assessment. Environmental Research Letters, 15(12): 124075. https://doi.org/10.1088/1748-9326/abcc29
      Schaefer, K., Zhang, T. J., Bruhwiler, L., et al., 2011. Amount and Timing of Permafrost Carbon Release in Response to Climate Warming. Tellus B, 63(2): 165-180. https://doi.org/10.1111/j.1600-0889.2011.00527.x
      Schneider von Deimling, T., Meinshausen, M., Levermann, A., et al., 2012. Estimating the Near-Surface Permafrost-Carbon Feedback on Global Warming. Biogeosciences, 9(2): 649-665. https://doi.org/10.5194/bg-9-649-2012
      Schuur, E. A. G., McGuire, A. D., Schädel, C., et al., 2015. Climate Change and the Permafrost Carbon Feedback. Nature, 520(7546): 171-179. https://doi.org/10.1038/nature14338
      Wu, Q. B., Liu, Y. Z., Zhang, J. M., et al., 2002. A Review of Recent Frozen Soil Engineering in Permafrost Regions along Qinghai-Tibet Highway, China. Permafrost and Periglacial Processes, 13(3): 199-205. https://doi.org/10.1002/ppp.420
      Wu, Q. B., Zhang, Z. Q., Gao, S. R., et al., 2016a. Thermal Impacts of Engineering Activities and Vegetation Layer on Permafrostin Different Alpine Ecosystems of the Qinghai-Tibet Plateau, China. The Cryosphere, 10(4): 1695-1706. https://doi.org/10.5194/tc-10-1695-2016
      Wu, X. D., Zhao, L., Fang, H. B., et al., 2016b. Environmental Controls on Soil Organic Carbon and Nitrogen Stocks in the High-Altitude Arid Western Qinghai-Tibetan Plateau Permafrost Region. Journal of Geophysical Research: Biogeosciences, 121(1): 176-187. https://doi.org/10.1002/2015jg003138
      Wu, X. D., Zhao, L., Hu, G. J., et al., 2018. Permafrost and Land Cover as Controlling Factors for Light Fraction Organic Matter on the Southern Qinghai-Tibetan Plateau. Science of the Total Environment, 613/614: 1165-1174. https://doi.org/10.1016/j.scitotenv.2017.09.052
      Xie, C. W., Gough, W. A., Tam, A., et al., 2013. Characteristics and Persistence of Relict High-Altitude Permafrost on Mahan Mountain, Loess Plateau, China. Permafrost and Periglacial Processes, 24(3): 200-209. https://doi.org/10.1002/ppp.1776
      Zhang, F., Mu, M., Fan, C. Y., et al., 2020. Studies of Permafrost Carbon Cycle in the Third Polar and Arctic Regions. Journal of Glaciology and Geocryology, 42(1): 170-181(in Chinese with English abstract).
      Zhang, T., Barry, R. G., Knowles, K., et al., 1999. Statistics and Characteristics of Permafrost and Ground-Ice Distribution in the Northern Hemisphere. Polar Geography, 23(2): 132-154. https://doi.org/10.1080/10889379909377670
      Zhang, T., Heginbottom, J. A., Barry, R. G., et al., 2000. Further Statistics on the Distribution of Permafrost and Ground Ice in the Northern Hemisphere. Polar Geography, 24(2): 126-131. https://doi.org/10.1080/10889370009377692
      Zhang, Y. Y., Zang, S. Y., Li, M. A., et al., 2021a. Spatial Distribution of Permafrost in the Xing'an Mountains of Northeast China from 2001 to 2018. Land, 10(11): 1127. https://doi.org/10.3390/land10111127
      Zhang, Z. Q., Wu, Q. B., Hou, M. T., et al., 2021b. Permafrost Change in Northeast China in the 1950s—2010s. Advances in Climate Change Research, 12(1): 18-28. https://doi.org/10.1016/j.accre.2021.01.006
      Zhang, Z. Q., Wu, Q. B., Xun, X. Y., et al., 2019. Spatial Distribution and Changes of Xing'an Permafrost in China over the Past Three Decades. Quaternary International, 523: 16-24. https://doi.org/10.1016/j.quaint.2019.06.007
      Zhao, L., Cheng, G. D., Li, S. X., et al., 2000. Thawing and Freezing Processes of Active Layer in Wudaoliang Region of Tibetan Plateau. Chinese Science Bulletin, 45(23): 2181-2187. https://doi.org/10.1007/bf02886326
      Zhao, L., Hu, G. J., Zou, D. F., et al., 2019. Permafrost Changes and Its Effects on Hydrological Processes on Qinghai-Tibet Plateau. Bulletin of Chinese Academy of Sciences, 34(11): 1233-1246(in Chinese with English abstract).
      Zhao, L., Sheng, Y., 2015. Permafrost Survey Manual. Science Press, Beijing(in Chinese).
      Zhao, L., Wu, X. D., Wang, Z. W., et al., 2018. Soil Organic Carbon and Total Nitrogen Pools in Permafrost Zones of the Qinghai-Tibetan Plateau. Scientific Reports, 8: 3656. https://doi.org/10.1038/s31598-018-22024-2
      Zhou, Y. W., 2000. Geocryology in China. Science Press, Beijing(in Chinese).
      Zhuang, Q. L., Melillo, J. M., Sarofim, M. C., et al., 2006. CO2 and CH4 Exchanges between Land Ecosystems and the Atmosphere in Northern High Latitudes over the 21st Century. Geophysical Research Letters, 33(17): L17403. https://doi.org/10.1029/2006gl026972
      Zou, D. F., Zhao, L., Sheng, Y., et al., 2017. A New Map of Permafrost Distribution on the Tibetan Plateau. The Cryosphere, 11(6): 2527-2542. https://doi.org/10.5194/tc-11-2527-2017
      程国栋, 1994. 中国冰川学和冻土学研究近10年进展和展望. 地理学报, 49(增刊1): 589-600.
      黄丰, 许继峰, 王保弟, 等, 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180
      李星波, 季军良, 曹展铭, 等, 2021. 柴达木盆地北缘古-新近纪河湖相沉积物颜色的气候意义. 地球科学, 46(9): 3278-3289. doi: 10.3799/dqkx.2020.329
      罗栋梁, 金会军, 林琳, 等, 2012. 青海高原中、东部多年冻土及寒区环境退化. 冰川冻土, 34(3): 538-546.
      马蔷, 金会军, 2020. 气候变暖对多年冻土区土壤有机碳库的影响. 冰川冻土, 42(1): 91-103.
      彭晨阳, 盛煜, 吴吉春, 等, 2021. 祁连山区多年冻土空间分布模拟. 冰川冻土, 43(1): 158-169.
      邱国庆, 程国栋, 1995. 中国的多年冻土: 过去与现在. 第四纪研究, 15(1)13-22.
      张凤, 母梅, 范成彦, 等, 2020. 从第三极到北极: 多年冻土碳循环研究进展. 冰川冻土, 42(1): 170-181.
      赵林, 胡国杰, 邹德富, 等, 2019. 青藏高原多年冻土变化对水文过程的影响. 中国科学院院刊, 34(11): 1233-1246.
      赵林, 盛煜, 2015. 多年冻土调查手册. 北京: 科学出版社.
      周幼吾, 2000. 中国冻土. 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(2)  / Tables(1)

      Article views (2619) PDF downloads(203) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return