• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 11
    Nov.  2023
    Turn off MathJax
    Article Contents
    Li Jingjing, Zheng Fengfeng, Xu Min, Yang Huan, 2023. Distribution and Environmental Implication of GDGTs in Lake Surface Sediments from Middle and Lower Reaches of Yangtze River. Earth Science, 48(11): 4335-4348. doi: 10.3799/dqkx.2022.104
    Citation: Li Jingjing, Zheng Fengfeng, Xu Min, Yang Huan, 2023. Distribution and Environmental Implication of GDGTs in Lake Surface Sediments from Middle and Lower Reaches of Yangtze River. Earth Science, 48(11): 4335-4348. doi: 10.3799/dqkx.2022.104

    Distribution and Environmental Implication of GDGTs in Lake Surface Sediments from Middle and Lower Reaches of Yangtze River

    doi: 10.3799/dqkx.2022.104
    • Received Date: 2022-03-23
      Available Online: 2023-11-30
    • Publish Date: 2023-11-25
    • In this study, it aims to examine the fractional abundance of GDGTs and GDGT-based proxies in 28 lakes in the middle and lower reaches of Yangtze River. It compares the GDGT distributions of these lakes with the published Chinese soil data to determine the lacustrine GDGT sources. The results indicate that there are different distributions of isoGDGTs between lake sediments and soils, however, the brGDGT distributions show no significant difference between lake sediments and soils, indicating that brGDGTs from lacustrine sediments may come from soils surrounding the lakes. It further measured the relationship between chemical parameters and GDGT distributions of these lakes affected by varying degrees of eutrophication. Our results show that only the water depth displays significant correlation with crenarchaeol, which implies that water depth may influence the production of Thaumarchaeota in these lake environments.

       

    • loading
    • Auguet, J. C., Barberan, A., Casamayor, E. O., 2010. Global Ecological Patterns in Uncultured Archaea. The ISME Journal, 4(2): 182-190. https://doi.org/10.1038/ismej.2009.109
      Bechtel, A., Smittenberg, R. H., Bernasconi, S. M., et al., 2010. Distribution of Branched and Isoprenoid Tetraether Lipids in an Oligotrophic and a Eutrophic Swiss Lake: Insights into Sources and GDGT-Based Proxies. Organic Geochemistry, 41(8): 822-832. https://doi.org/10.1016/j.orggeochem.2010.04.022
      Blaga, C. I., Reichart, G. J., Heiri, O., et al., 2009. Tetraether Membrane Lipid Distributions in Water-Column Particulate Matter and Sediments: A Study of 47 European Lakes along a North-South Transect. Journal of Paleolimnology, 41(3): 523-540. https://doi.org/10.1007/s10933-008-9242-2
      Castañeda, I. S., Schouten, S., 2011. A Review of Molecular Organic Proxies for Examining Modern and Ancient Lacustrine Environments. Quaternary Science Reviews, 30(21/22): 2851-2891. https://doi.org/10.1016/j.quascirev.2011.07.009
      Chen, L., Huang, Z. D., Niu, L. L., et al., 2021. GDGTS-Based Quantitative Reconstruction of Water Level Changes and Precipitation at Daye Lake, Qinling Mountains (Central-East China), over the Past 2 000 Years. Quaternary Science Reviews, 267: 107099. https://doi.org/10.1016/j.quascirev.2021.107099
      Damsté, J. S., Schouten, S., Hopmans, E. C., et al., 2002. Crenarchaeol: The Characteristic Core Glycerol Dibiphytanyl Glycerol Tetraether Membrane Lipid of Cosmopolitan Pelagic Crenarchaeota. Journal of Lipid Research, 43(10): 1641-1651. https://doi.org/10.1194/jlr.m200148-jlr200
      Fietz, S., Huguet, C., Bendle, J., et al., 2012. Co-Variation of Crenarchaeol and Branched GDGTS in Globally-Distributed Marine and Freshwater Sedimentary Archives. Global and Planetary Change, 92/93: 275-285. https://doi.org/10.1016/j.gloplacha.2012.05.020
      Hopmans, E. C., Weijers, J. W. H., Schefuß, E., et al., 2004. A Novel Proxy for Terrestrial Organic Matter in Sediments Based on Branched and Isoprenoid Tetraether Lipids. Earth and Planetary Science Letters, 224(1/2): 107-116. https://doi.org/10.1016/j.epsl.2004.05.012
      Huguet, C., Hopmans, E. C., Febo-Ayala, W., et al., 2006. An Improved Method to Determine the Absolute Abundance of Glycerol Dibiphytanyl Glycerol Tetraether Lipids. Organic Geochemistry, 37(9): 1036-1041. https://doi.org/10.1016/j.orggeochem.2006.05.008
      Inglis, G. N., Farnsworth, A., Lunt, D., et al., 2015. Descent toward the Icehouse: Eocene Sea Surface Cooling Inferred from GDGT Distributions. Paleoceanography, 30(7): 1000-1020. https://doi.org/10.1002/2014pa002723
      Li, J. J., Naafs, B. D. A., Pancost, R. D., et al., 2017. Distribution of Branched Tetraether Lipids in Ponds from Inner Mongolia, NE China: Insight into the Source of BRGDGTS. Organic Geochemistry, 112: 127-136. https://doi.org/10.1016/j.orggeochem.2017.07.005
      Li, J. J., Pancost, R. D., Naafs, B. D. A., et al., 2016. Distribution of Glycerol Dialkyl Glycerol Tetraether (GDGT) Lipids in a Hypersaline Lake System. Organic Geochemistry, 99: 113-124. https://doi.org/10.1016/j.orggeochem.2016.06.007
      Li, J. J., Pancost, R. D., Naafs, B. D. A., et al., 2019. Multiple Environmental and Ecological Controls on Archaeal Ether Lipid Distributions in Saline Ponds. Chemical Geology, 529: 119293. https://doi.org/10.1016/j.chemgeo.2019.119293
      Li, J. J., Yang, H., Zheng, F. F., et al., 2021. Occurrence and Distribution of Glycerol Dialkyl Glycerol Tetraethers in Lake Water Column: A Review. Journal of Lake Sciences, 33(5): 1334-1349 (in Chinese with English abstract). doi: 10.18307/2021.0504
      Ma, R. H., Yang, G. S., Duan, H. T., et al., 2011. China's Lakes at Present: Number, Area and Spatial Distribution. Science China Earth Sciences, 54(2): 283-289. https://doi.org/10.1007/s11430-010-4052-6
      Naeher, S., Peterse, F., Smittenberg, R. H., et al., 2014. Sources of Glycerol Dialkyl Glycerol Tetraethers (GDGTS) in Catchment Soils, Water Column and Sediments of Lake Rotsee (Switzerland)-Implications for the Application of GDGT-Based Proxies for Lakes. Organic Geochemistry, 66: 164-173. https://doi.org/10.1016/j.orggeochem.2013.10.017
      Pearson, E. J., Juggins, S., Talbot, H. M., et al., 2011. A Lacustrine GDGT-Temperature Calibration from the Scandinavian Arctic to Antarctic: Renewed Potential for the Application of GDGT-Paleothermometry in Lakes. Geochimica et Cosmochimica Acta, 75(20): 6225-6238. https://doi.org/10.1016/j.gca.2011.07.042
      Powers, L., Werne, J. P., Vanderwoude, A. J., et al., 2010. Applicability and Calibration of the TEX86 Paleothermometer in Lakes. Organic Geochemistry, 41(4): 404-413. https://doi.org/10.1016/j.orggeochem.2009.11.009
      Powers, L. A., Werne, J. P., Johnson, T. C., et al., 2004. Crenarchaeotal Membrane Lipids in Lake Sediments: A New Paleotemperature Proxy for Continental Paleoclimate Reconstruction?. Geology, 32(7): 613-616. https://doi.org/10.1130/g20434.1
      Schouten, S., Hopmans, E. C., Schefuß, E., et al., 2002. Distributional Variations in Marine Crenarchaeotal Membrane Lipids: A New Tool for Reconstructing Ancient Sea Water Temperatures?. Earth and Planetary Science Letters, 204(1-2): 265-274. https://doi.org/10.1016/S0012-821X(02)00979-2
      Schouten, S., Hopmans, E. C., Sinninghe Damsté, J. S., 2013. The Organic Geochemistry of Glycerol Dialkyl Glycerol Tetraether Lipids: A Review. Organic Geochemistry, 54: 19-61. https://doi.org/10.1016/j.orggeochem.2012.09.006
      Schouten, S., van der Meer, M. T. J., Hopmans, E. C., et al., 2007. Archaeal and Bacterial Glycerol Dialkyl Glycerol Tetraether Lipids in Hot Springs of Yellowstone National Park. Applied and Environmental Microbiology, 73(19): 6181-6191. https://doi.org/10.1128/AEM.00630-07
      Sinninghe Damsté, J. S., Rijpstra, W. I., Hopmans, E. C., et al., 2014. Ether- and Ester-Bound Iso-Diabolic Acid and other Lipids in Members of Acidobacteria Subdivision 4. Applied and Environmental Microbiology, 80(17): 5207-5218. https://doi.org/10.1128/AEM.01066-14
      Sun, Q., Chu, G. Q., Liu, M. M., et al., 2011. Distributions and Temperature Dependence of Branched Glycerol Dialkyl Glycerol Tetraethers in Recent Lacustrine Sediments from China and Nepal. Journal of Geophysical Research, 116(G1): G01008. https://doi.org/10.1029/2010jg001365
      Tierney, J. E., Russell, J. M., 2009. Distributions of Branched GDGTS in a Tropical Lake System: Implications for Lacustrine Application of the MBT/CBT Paleoproxy. Organic Geochemistry, 40(9): 1032-1036. https://doi.org/10.1016/j.orggeochem.2009.04.014
      van Bree, L. G. J., Peterse, F., Baxter, A. J., et al., 2020. Seasonal Variability and Sources of In Situ BRGDGT Production in a Permanently Stratified African Crater Lake. Biogeosciences, 17(21): 5443-5463. https://doi.org/10.5194/bg-17-5443-2020
      Wang, H. Y., Dong, H. L., Zhang, C. L., et al., 2014. Water Depth Affecting Thaumarchaeol Production in Lake Qinghai, Northeastern Qinghai-Tibetan Plateau: Implications for Paleo Lake Levels and Paleoclimate. Chemical Geology, 368: 76-84. https://doi.org/10.1016/j.chemgeo.2014.01.009
      Wang, H. Y., Liu, W. G., Lu, H. X., 2016. Appraisal of Branched Glycerol Dialkyl Glycerol Tetraether-Based Indices for North China. Organic Geochemistry, 98: 118-130. https://doi.org/10.1016/j.orggeochem.2016.05.013
      Wang, M. D., Tian, Q., Li, X. M., et al., 2020. TEX86 as a Potential Proxy of Lake Water pH in the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 538: 109381. https://doi.org/10.1016/j.palaeo.2019.109381
      Weijers, J. W. H., Schouten, S., Hopmans, E. C., et al., 2006. Membrane Lipids of Mesophilic Anaerobic Bacteria Thriving in Peats have Typical Archaeal Traits. Environmental Microbiology, 8(4): 648-657. https://doi.org/10.1111/j.1462-2920.2005.00941.x
      Weijers, J. W. H., Schouten, S., van den Donker, J. C., et al., 2007. Environmental Controls on Bacterial Tetraether Membrane Lipid Distribution in Soils. Geochimica et Cosmochimica Acta, 71(3): 703-713. https://doi.org/10.1016/j.gca.2006.10.003
      Xie, S., Pancost, R. D., Chen, L., et al., 2012. Microbial Lipid Records of Highly Alkaline Deposits and Enhanced Aridity Associated with Significant Uplift of the Tibetan Plateau in the Late Miocene. Geology, 40(4): 291-294. https://doi.org/10.1130/g32570.1
      Xie, S. C., Hu, C. Y., Gu, Y. S., et al., 2015. Paleohydrological Variation since 13 ka BP in Middle Yangtze Region. Earth Science, 40(2): 198-205 (in Chinese with English abstract).
      Yang, H., Pancost, R. D., Dang, X. Y., et al., 2014. Correlations between Microbial Tetraether Lipids and Environmental Variables in Chinese Soils: Optimizing the Paleo-Reconstructions in Semi-Arid and Arid Regions. Geochimica et Cosmochimica Acta, 126: 49-69. https://doi.org/10.1016/j.gca.2013.10.041
      Yao, Y., Zhao, J. J., Bauersachs, T., et al., 2019. Effect of Water Depth on the TEX86 Proxy in Volcanic Lakes of Northeastern China. Organic Geochemistry, 129: 88-98. https://doi.org/10.1016/j.orggeochem.2019.01.014
      Zhang, Y. G., Pagani, M., Wang, Z. R., 2016. Ring Index: A New Strategy to Evaluate the Integrity of TEX86 Paleothermometry. Paleoceanography, 31(2): 220-232. https://doi.org/10.1002/2015pa002848
      Zhang, Y. G., Zhang, C. L., Liu, X. L., et al., 2011. Methane Index: A Tetraether Archaeal Lipid Biomarker Indicator for Detecting the Instability of Marine Gas Hydrates. Earth and Planetary Science Letters, 307(3/4): 525-534. https://doi.org/10.1016/j.epsl.2011.05.031
      Zheng, F. F., Chen, Y. F., Wang, Y. L., et al., 2018. Influence of Seasonal Temperature Variation and pH Disparity on BGDGTS Thermometers in Soils. Earth Science, 43(S1): 71-83 (in Chinese with English abstract).
      Zhu, G. W., Xu, H., Zhu, M. Y., et al., 2019. Changing Characteristics and Driving Factors of Trophic State of Lakes in the Middle and Lower Reaches of Yangtze River in the Past 30 Years. Journal of Lake Sciences, 31(6): 1510-1524 (in Chinese with English abstract). doi: 10.18307/2019.0622
      Zhu, X. C., Wang, Y. B., Dang, X. Y., et al., 2022. Spatiotemporal Distribution of Microbial Tetraether Lipids in a Lake and Its Inflowing River: Implications for the Identification of Flooding Events. Journal of Earth Science, 33(6): 1601-1613. https://doi.org/10.1007/s12583-021-1552-6
      李婧婧, 杨欢, 郑峰峰, 等, 2021. 湖泊水体微生物四醚膜脂化合物研究进展. 湖泊科学, 33(5): 1334-1349. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202105004.htm
      谢树成, 胡超涌, 顾延生, 等, 2015. 最近13 ka以来长江中游古水文变化. 地球科学, 40(2): 198-205. doi: 10.3799/dqkx.2015.015
      郑峰峰, 陈雨霏, 王永莉, 等, 2018. 季节温度变化及土壤pH差异对土壤bGDGTs温度指标的影响. 地球科学, 43(S1): 71-83. doi: 10.3799/dqkx.2018.950
      朱广伟, 许海, 朱梦圆, 等, 2019. 三十年来长江中下游湖泊富营养化状况变迁及其影响因素. 湖泊科学, 31(6): 1510-1524. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201906003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(2)

      Article views (1017) PDF downloads(81) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return