• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 6
    Jun.  2024
    Turn off MathJax
    Article Contents
    Zhang Jinming, Wang Bingzhang, Fu Yanwen, Tian Chengxiu, 2024. Chronology, Petrogeochemistry and Geological Significance of Garnet Bearing Granodiorite in Jianfengshan Area, Northern Qaidam Margin. Earth Science, 49(6): 1983-2000. doi: 10.3799/dqkx.2022.105
    Citation: Zhang Jinming, Wang Bingzhang, Fu Yanwen, Tian Chengxiu, 2024. Chronology, Petrogeochemistry and Geological Significance of Garnet Bearing Granodiorite in Jianfengshan Area, Northern Qaidam Margin. Earth Science, 49(6): 1983-2000. doi: 10.3799/dqkx.2022.105

    Chronology, Petrogeochemistry and Geological Significance of Garnet Bearing Granodiorite in Jianfengshan Area, Northern Qaidam Margin

    doi: 10.3799/dqkx.2022.105
    • Received Date: 2021-11-25
      Available Online: 2024-07-11
    • Publish Date: 2024-06-25
    • Garnet bearing granodiorite in the Jianfengshan area on the northern margin of Qaidam basin is vein distributed in Dakendaban rock group. The rocks are mainly composed of quartz (30%-35%), plagioclase (45%-50%), potassium feldspar (15%-20%), biotite (5%) and a small amount of muscovite (< 5%), garnet (< 5%).Zircon U-Pb dating shows that the formation age of garnet bearing granodiorite is (441.1 ± 1.4) Ma, belonging to Early Silurian.The rocks have high SiO2 (66.27%-74.42%), Na2O (3.47%-6.75%), Al2O3 (14.71%-20.43%), low MgO (0.07%-0.56%), Mg# (19.8-43.6) contents and strong peraluminite (A/CNK ranges from 0.99~1.34).The minerals are enriched in U, K, Ba and depleted in Nb, Ta, Sr, P, Eu, Ti and other elements. The REE distribution curves show a right-leaning pattern, showing a weak negative Eu anomaly (δEu= 0.31-0.81). The rocks have high ISr values (0.707 123-0.708 081) and negative εNd(t) values (-1.91 to -2.37), and the two-stage model age TDM2 is 1 660-1 756 Ma. After correction, (206Pb/204Pb)i value is 18.354 7-18.582 2, (207Pb/204Pb)i value is 15.365 4-15.641 2, (208Pb/204Pb)i value is 38.254 7-38.654 1. Zircon Hf εHf(t) ratios range from 2.5 to -9.1, and the corresponding Hf isotopic crust model ages TDM2 range in 1 263-2 012 Ma. The study of rock geochemistry and isotopes shows that the garnet bearing granodiorite in the Jianfengshan is an S-type granite, which was formed in the collision orogenic stage between Qaidam block and Qilian block. It is the early subducted continental and oceanic crust that experienced ultra-high pressure metamorphism (eclogite facies conditions) and the rise of partially molten fluid, resulting in the partial melting of the continental crust.

       

    • loading
    • Abbott, R. N., 1981. The Role of Manganese in the Paragenesis of Magmatic Garnet: An Example from the Old Woman-Piute Range, California: A Discussion. The Journal of Geology, 89(6): 767-769.
      Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/s0024-4937(99)00052-3
      Allan, B., Clarke, D. B., 1981. Occurrence and Origin of Garnets in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 19: 19-24.
      Barbarin, B., 1990. Granitoids: Main Petrogenetic Classifications in Relation to Origin and Tectonic Setting. Geological Journal, 25(3-4): 227-238. https://doi.org/10.1002/gj.3350250306
      Barth, M. G., McDonough, W. F., Rudnick, R. L., 2000. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165(3-4): 197-213. https://doi.org/10.1016/s0009-2541(99)00173-4
      Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
      Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., 2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47(2): 329-353. https://doi.org/10.1093/petrology/egi077
      Brown, D., Ryan, P. D., Afonso, J. C., et al., 2011. Arc-Continent Collision: The Making of an Orogen. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg, 477-493. https://doi.org/10.1007/978-3-540-88558-0_17
      Cai, P. J., Xu, R. K., Zheng, Y. Y., et al., 2018. From Oceanic Subduction to Continental Collision in North Qaidam: Evidence from Kaipinggou Orogenic M-Type Peridotite. Earth Science, 43(8): 2875-2892(in Chinese with English abstract).
      Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      Chen, N. S., Gong, S. L., Sun, M., et al., 2009. Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet: Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 35(3-4): 367-376. https://doi.org/10.1016/j.jseaes.2008.10.004
      Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-x
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h
      Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508. https://doi.org/10.1016/s0016-7037(99)00027-7
      Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      Lu, S. N., Chen, Z. H., Li, H. K., et al., 2004. Late Mesoproterozoic-Early Neoproterozoic Evolution of the Qinling Orogen. Geological Bulletin of China, 23(2): 107-112(in Chinese with English abstract).
      Lu, S. N., Yu, H. F., Zhao, F. Q., 2002. Preliminary Study on Precambrian Geology in the Northern Qinghai-Tibet Plateau. Geological Publishing House, Beijing(in Chinese).
      Ma, Q., Zheng, J. P., Griffin, W. L., et al., 2012. Triassic "Adakitic" Rocks in an Extensional Setting (North China): Melts from the Cratonic Lower Crust. Lithos, 149: 159-173. https://doi.org/10.1016/j.lithos.2012.04.017
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Meng, F. C., Zhang, J. X., 2008. Contemporaneous of Early Palaeozoic Granite and High Temperature Metamorphism, North Qaidam Mountains, Western China. Acta Petrologica Sinica, 24(7): 1585-1594(in Chinese with English abstract)
      Mo, X. X., 2020. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257(in Chinese with English abstract).
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.01.001
      Pearce, J. A., Lippard, S. J., Roberts, S., 1984. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geological Society, London, Special Publications, 16(1): 77-94. https://doi.org/10.1144/gsl.sp.1984.016.01.06
      Ren, Y. F., Chen, D. L., Gong, X. K., et al., 2019. Discovery and P-T-t Paths of Lawsonite Pseudomorph-Bearing Eclogites in the Yuka Terrane, North Qaidam Ultrahigh Pressure Metamorphic Belt and Exploration on Key Factors Controlling Lawsonite Formation. Earth Science, 44(12): 4009-4016(in Chinese with English abstract).
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Song, S. G., Niu, Y. L., Su, L., et al., 2014. Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting during Exhumation in Response to Continental Collision. Geochimica et Cosmochimica Acta, 130: 42-62. https://doi.org/10.1016/j.gca.2014.01.008
      Song, S. G., Niu, Y. L., Zhang, L. F., et al., 2009. Time Constraints on Orogenesis from Oceanic Subduction to Continental Subduction, Collision, and Exhumation: An Example from North Qilian and North Qaidam HP-UHP Belts. Acta Petrologica Sinica, 25(9): 2067-2077(in Chinese with English abstract).
      Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science in China (Series D), 45(7): 916-940(in Chinese).
      Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2007. Two Types of Peridotite in Continental Orogenic Belts: A Case Study from the North Qaidam UHP Metamorphic Belt. Earth Science Frontiers, 14(2): 129-138(in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
      Villaros, A., Stevens, G., Moyen, J. F., et al., 2009. The Trace Element Compositions of S-Type Granites: Evidence for Disequilibrium Melting and Accessory Phase Entrainment in the Source. Contributions to Mineralogy and Petrology, 158(4): 543-561. https://doi.org/10.1007/s00410-009-0396-3
      Wang, H. Q., Shao, T. Q., Tang, H. H., et al., 2016. Metamorphic Rock Deformation Characteristics, Geochemical Characteristics and Geological Significance of the Dakendaba Group in Buhete Mountain on the Northern Margin of Qaidam Mountain. Geological Bulletin of China, 35(9): 1488-1496(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2016.09.012
      Wu, C. L., Gao, Y. H., Li, Z. L., et al., 2014. Zircon SHRIMP U-Pb Dating of Granites from Dulan and the Chronological Framework of the North Qaidam UHP Belt, NW China. Science China: Earth Sciences, 44(10): 2142-2159(in Chinese).
      Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2007. Zircon SHRIMP U-Pb Dating of Granites from the Da Qaidam Area in the North Margin of Qaidam Basin, NW China. Acta Petrologica Sinica, 23(8): 1861-1875(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.08.008
      Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2008. Zircon SHRIMP U-Pb Dating of Granites in the Western Part of Northern Qaidam Basin and Its Petrogeochemical Characteristics. Science in China (Series D), 38(8): 930-949(in Chinese). doi: 10.3321/j.issn:1006-9267.2008.08.002
      Wu, C. L., Yang, J. S., Li, H. B., et al., 2001. Zircon SHRIMP Ages of Mountain Qaidam. Chinese Science Bulletin, 46 (20): 1743-1746(in Chinese). doi: 10.1360/csb2001-46-20-1743
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).
      Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003
      Xu, Z. Q., Li, H. B., Yang, J. S., 2006. An Orogenic Plateau: The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 1-17(in Chinese with English abstract).
      Yan, G. Q., Wang, X. X., Huang, Y., et al., 2020. Constraint of Pb Isotope on Ore-Forming Source Origin of Nuri Polymetallic Deposit, Tibet. Earth Science, 45(1): 31-42(in Chinese with English abstract).
      Yu, S. Y., Zhang, J. X., Li, H. K., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane: New Evidence for Deep Continental Subduction. Gondwana Research, 23(3): 901-919. https://doi.org/10.1016/j.gr.2012.07.018
      Zartman, R. E., Haines, S. M., 1988. The Plumbotectonic Model for Pb Isotopic Systematics among Major Terrestrial Reservoirs: A Case for Bi-Directional Transport. Geochimica et Cosmochimica Acta, 52(6): 1327-1339. https://doi.org/10.1016/0016-7037(88)90204-9
      Zha, X. F., Gu, P. Y., Dong, Z. C., et al., 2016. Geological Record of Tectono-Thermal Event at Early Paleozoic and Its Tectonic Setting in West Segment of the North Qaidam. Earth Science, 41(4): 586-604(in Chincsc with English abstract).
      Zhang, G. B., Zhang, L. F., Song, S. G., 2012. An Overview of the Tectonic Evolution of North Qaidam UHPM Belt: From Oceanic Subduction to Continental Collision. Geological Journal of China Universities, 18(1): 28-40(in Chinese with English abstract).
      Zhang, J. X., Yang, J. S., Mattinson, C. G., et al., 2005. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China: Petrological and Isotopic Constraints. Lithos, 84(1-2): 51-76. https://doi.org/10.1016/j.lithos.2005.02.002
      Zhao, Z. X., Wei, J. H., Fu, L. B., et al., 2017. The Early Paleozoic Xitieshan Syn-Collisional Granite in the North Qaidam Ultrahigh-Pressure Metamorphic Belt, NW China: Petrogenesis and Implications for Continental Crust Growth. Lithos, 278: 140-152. https://doi.org/10.1016/j.lithos.2017.01.019
      Zhou, B., Zheng, Y. Y., Xu, R. K., et al., 2013. LA-ICP-MS Zircon U-Pb Dating and Hf Isotope Geochemical Characteristics of Qaidamshan Intrusive Body. Geological Bulletin of China, 32(7): 1027-1034(in Chinese with English abstract).
      Zhu, X. H., Chen, D. L., Liu, L., et al., 2014. Geochronology, Geochemistry and Significance of the Early Paleozoic Back-Arc Type Ophiolite in Lüliangshan Area, North Qaidam. Acta Petrologica Sinica, 30(3): 822-834(in Chinese with English abstract).
      Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571. https://doi.org/10.1146/annurev.earth.14.1.493
      蔡鹏捷, 许荣科, 郑有业, 等, 2018. 柴北缘从大洋俯冲到陆陆碰撞: 来自开屏沟造山带M型橄榄岩的证据. 地球科学, 43(8): 2875-2892. doi: 10.3799/dqkx.2018.112?viewType=HTML
      陆松年, 陈志宏, 李怀坤, 等, 2004. 秦岭造山带中—新元古代(早期)地质演化. 地质通报, 23(2): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200402001.htm
      陆松年, 于海峰, 赵风清, 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社.
      孟繁聪, 张建新, 2008. 柴北缘绿梁山早古生代花岗岩浆作用与高温变质作用的同时性. 岩石学报, 24(7): 1585-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807015.htm
      莫宣学, 2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257. doi: 10.3799/dqkx.2020.160?viewType=HTML
      潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201804003.htm
      任云飞, 陈丹玲, 宫相宽, 等, 2019. 柴北缘鱼卡含硬柱石假象榴辉岩的发现P-T-t轨迹及控制硬柱石形成的主要因素. 地球科学, 44(12): 4009-4016. doi: 10.3799/dqkx.2019.251?viewType=HTML
      宋述光, 牛耀龄, 张立飞, 等, 2009. 大陆造山运动: 从大洋俯冲到大陆俯冲、碰撞、折返的时限: 以北祁连山、柴北缘为例. 岩石学报, 25(9): 2067-2077. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909003.htm
      宋述光, 张立飞, 牛耀龄, 等, 2007. 大陆碰撞造山带的两类橄榄岩: 以柴北缘超高压变质带为例. 地学前缘, 14(2): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200702009.htm
      宋述光, 王梦珏, 王潮, 等, 2015. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长. 中国科学: 地球科学, 45(7): 916-940. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201507003.htm
      王洪强, 邵铁全, 唐汉华, 等, 2016. 柴北缘布赫特山一带达肯大坂岩群变质岩变形特征、地球化学特征及地质意义. 地质通报, 35(9): 1488-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201609012.htm
      吴才来, 郜源红, 李兆丽, 等, 2014. 都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架. 中国科学: 地球科学, 44(10): 2142-2165. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410004.htm
      吴才来, 郜源红, 吴锁平, 等, 2007. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年. 岩石学报, 23(8): 1861-1875. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708007.htm
      吴才来, 郜源红, 吴锁平, 等, 2008. 柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征. 中国科学(D辑), 38(8): 930-949. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200808002.htm
      吴才来, 杨经绥, 李怀斌, 等, 2001. 柴达木山花岗岩锆石SHRIMP定年. 科学通报, 46(20): 1742-1746. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200120017.htm
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      许志琴, 李海兵, 杨经绥, 2006. 造山的高原-青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604001.htm
      闫国强, 王欣欣, 黄勇, 等, 2020. Pb同位素对努日铜钼钨多金属矿床成矿物源的制约. 地球科学, 45(1): 31-42. doi: 10.3799/dqkx.2019.191?viewType=HTML
      查显锋, 辜平阳, 董增产, 等, 2016. 柴北缘西段早古生代构造-热事件及其构造环境. 地球科学, 41(4): 586-604. doi: 10.3799/dqkx.2016.048?viewType=HTML
      张贵宾, 张立飞, 宋述光, 2012. 柴北缘超高压变质带: 从大洋到大陆的深俯冲过程. 高校地质学报, 18(1): 28-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201005.htm
      周宾, 郑有业, 许荣科, 等, 2013. 青海柴达木山岩体LA-ICP-MS锆石U-Pb定年及Hf同位素特征. 地质通报, 32(7): 1027-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201307007.htm
      朱小辉, 陈丹玲, 刘良, 等, 2014. 柴北缘绿梁山地区早古生代弧后盆地型蛇绿岩的年代学、地球化学及大地构造意义. 岩石学报, 30(3): 822-834. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201403021.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(17)  / Tables(5)

      Article views (479) PDF downloads(69) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return