• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 7
    Jul.  2022
    Turn off MathJax
    Article Contents
    Zhou Ziqiang, Zhu Hongtao, Liu Qianghu, Liu Sheng, 2022. Coupled Response of Concordant-Discordant Input Systems and Depositional Interactions within Beibuwan Basin, South China Sea: A Case Study from C Sag, Weixinan Depression. Earth Science, 47(7): 2521-2535. doi: 10.3799/dqkx.2022.106
    Citation: Zhou Ziqiang, Zhu Hongtao, Liu Qianghu, Liu Sheng, 2022. Coupled Response of Concordant-Discordant Input Systems and Depositional Interactions within Beibuwan Basin, South China Sea: A Case Study from C Sag, Weixinan Depression. Earth Science, 47(7): 2521-2535. doi: 10.3799/dqkx.2022.106

    Coupled Response of Concordant-Discordant Input Systems and Depositional Interactions within Beibuwan Basin, South China Sea: A Case Study from C Sag, Weixinan Depression

    doi: 10.3799/dqkx.2022.106
    • Received Date: 2022-01-16
    • Publish Date: 2022-07-25
    • Lacustrine rift basin is characterized by multiple input systems and complex paleo-geomorphology, and a source-to-sink analysis can help improve sandstone prediction. Based on logging and 3D seismic data, this study distinguishes concordant and discordant input systems and establishes the spatio-temporal distribution pattern of depositional systems within the C Sag, Weixinan Depression. The results indicate that the C Sag was supplied by the northern and southern transverse input systems as well as the western axial system during deposition of the third member of Liushagang Formation, and the southern system can be further divided into three second-order subsystems (i.e., subsystems S-Ⅰ, S-Ⅱ, S-Ⅲ). The axial system with gentle catchment and wide valley was characterized as a concordant input system with steady flux and tractive flow, as manifested by a braided delta with correlative grain size and sand ratio. In contrast, the discordant transverse input system, with a steep catchment and incised valleys (e.g., sub-system S-Ⅱ) was characterized by sediment pulse and gravity flow, as manifested by basin floor fan and fan delta with thick mudstone intercalated with thin conglomerate-bearing layer. The axial braided delta developed in the lower part of third member of Liushagang Formation was distributed mostly in the northern C Sag, as a result of intensive transverse sediment contributions from southern Weixinan Low Uplift. The reduced sediment flux from transverse input system, however, resulted in southward shifted axial delta in the upper part of third member of Liushagang Formation. Through a source-to-sink analysis of the C Sag, this study demonstrates that different input systems and interactions between depositional systems have exerted important controls on the spatio-temporal distribution patterns of favorable sandstone, with implications for hydrocarbon explorations in C Sag and other lacustrine rift basins with similar characteristics.

       

    • loading
    • Allen, P. A., Allen, J. R., 2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. Willey-Blackwell, Oxford.
      Allen, P. A., Hovius, N., 1998. Sediment Supply from Landslide-Dominated Catchments: Implications for Basin-Margin Fans. Basin Research, 10(1): 19-35. https://doi.org/10.1046/j.1365-2117.1998.00060.x
      Connell, S. D., Kim, W., Paola, C., et al., 2012. Fluvial Morphology and Sediment-Flux Steering of Axial-Transverse Boundaries in an Experimental Basin. Journal of Sedimentary Research, 82(5): 310-325. https://doi.org/10.2110/jsr.2012.27
      Chen, J., Liu, C. H., Tan, M. Y., et al., 2016. Depositional Model of Prograding Delta Confluences: A Case from Es3m Members in the Paleogene Dongying Sag. Acta Sedimentologica Sinica, 34(6): 1187-1197 (in Chinese with English abstract).
      Chiarella, D., Capella, W., Longhitano, S. G., et al., 2021. Fault-Controlled Base-of-Scarp Deposits. Basin Research, 33(2): 1056-1075. https://doi.org/10.1111/bre.12505
      Cullen, T. M., Collier, R. E. L., Gawthorpe, R. L., et al., 2020. Axial and Transverse Deep-Water Sediment Supply to Syn-Rift Fault Terraces: Insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece. Basin Research, 32(5): 1105-1139. https://doi.org/10.1111/bre.12416
      Dong, G. Y., He, Y. B., 2016. Mechanism of Sand Body Prediction in a Continental Rift Basin by Coupling Paleogeomorphic Elements under the Control of Base Level. Petroleum Exploration and Development, 43(4): 529-539 (in Chinese with English abstract).
      Elliott, G. M., Wilson, P., Jackson, C. A. L., et al., 2012. The Linkage between Fault Throw and Footwall Scarp Erosion Patterns: An Example from the Bremstein Fault Complex, Offshore Mid-Norway. Basin Research, 24(2): 180-197. https://doi.org/10.1111/j.1365-2117.2011.00524.x
      Feng, W. J., Lu, F. M., Wu, S. H., et al., 2018. Reservoir Architecture Analysis of Braided Delta Front Developed in the Long-Axis Gentle Slope of Faulted Basin: A Case Study of the Fifth Zaoyuan Formation, Zaonan Fault Block, Zaoyuan Oilfield, Dagang. Journal of China University of Mining & Technology, 47(2): 367-379 (in Chinese with English abstract).
      Gawthorpe, R. L., Leeder, M. R., 2000. Tectono-Sedimentary Evolution of Active Extensional Basins. Basin Research, 12(3-4): 195-218. https://doi.org/10.1111/j.1365-2117.2000.00121.x
      Ge, J. W., Zhu, X. M., Lei, Y. C., et al., 2021. Tectono-Sedimentary Development of Multiphase Rift Basins: An Example of the Lufeng Depression. Earth Science Frontiers, 28(1): 77-89 (in Chinese with English abstract).
      Ge, J. W., Zhu, X. M., Wu, C., et al., 2019. Sedimentary Characteristics and Genetic Difference of Braided Delta: A Case Study of Enping Formation in Lufeng Sag, Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 139-152 (in Chinese with English abstract).
      Ge, J. W., Zhu, X. M., Zhang, X. T., et al., 2018. Tectono-Sedimentation Model of the Eocene Wenchang Formation in the Lufeng Depression, Pearl River Mouth Basin. Journal of China University of Mining & Technology, 47(2): 308-322 (in Chinese with English abstract).
      Henstra, G. A., Grundvåg, S. A., Johannessen, E. P., et al., 2016. Depositional Processes and Stratigraphic Architecture within a Coarse-Grained Rift-Margin Turbidite System: The Wollaston Forland Group, East Greenland. Marine and Petroleum Geology, 76: 187-209. https://doi.org/10.1016/j.marpetgeo.2016.05.018
      Helland-Hansen, W., Sømme, T. O., Martinsen, O. J., et al., 2016. Deciphering Earth's Natural Hourglasses: Perspectives on Source-to-Sink Analysis. Journal of Sedimentary Research, 86(9): 1008-1033. https://doi.org/10.2110/jsr.2016.56
      Hu, D. S., Fan, C. W., Zhu, H. T., et al., 2020. Sedimentary Characteristics and Exploration Significance of Sub-Lacustrine Fan of Highstand System Tract in the First Member of Liushagang Formation in the Weixinan Sag. China Petroleum Exploration, 25(5): 23-31 (in Chinese with English abstract).
      Jiang, P., Qin, C. Y., Yang, X. B., et al., 2020. Sedimentary Architecture, Distribution Features and Genesis of Steep Slope Fan in Upper Liushagang Formation, Weixi'nan Sag. Earth Science, 45(2): 534-546 (in Chinese with English abstract).
      Leeder, M. R., Mack, G. H., 2001. Lateral Erosion ('Toe-Cutting') of Alluvial Fans by Axial Rivers: Implications for Basin Analysis and Architecture. Journal of the Geological Society, 158(6): 885-893. https://doi.org/10.1144/0016-760000-198
      Li, C., Fan, C. W., Hu, L., et al., 2021. Tectonic Evolution Characteristics and Genesis of Weixi'nan Low Uplift in Beibu Gulf Basin. Marine Origin Petroleum Geology, 26(4): 319-325 (in Chinese with English abstract).
      Li, S. L., Zhu, X. M., Li, H. Y., et al., 2017a. Quantitative Characterization of Elements and Coupling Mode in Source-to-Sink System: A Case Study of the Shahejie Formation between the Shaleitian Uplift and Shanan Sag, Bohai Sea. China Offshore Oil and Gas, 29(4): 39-50 (in Chinese with English abstract).
      Li, S. L., Zhu, X. M., Liu, Q. H., et al., 2017b. Evaluation and Prediction of Favorable Reservoirs in Source-to-Sink Systems of the Palaeogene, Shaleitian Uplift. Earth Science, 42(11): 1994-2009 (in Chinese with English abstract).
      Lin, C. S., Pan, Y. L., Xiao, J. X., et al., 2000. Structural Slope-Break Zone: Key Concept for Stratigraphic Sequence Analysis and Petroleum Forecasting in Fault Subsidence Basins. Earth Science, 25(3): 260-266 (in Chinese with English abstract).
      Liu, Q. H., Zhu, H. T., Zhu, X. M., et al., 2019. Proportional Relationship between the Flux of Catchment-Fluvial Segment and Their Sedimentary Response to Diverse Bedrock Types in Subtropical Lacustrine Rift Basins. Marine and Petroleum Geology, 107: 351-364. https://doi.org/10.1016/j.marpetgeo.2019.05.031
      Liu, Y. M., Wu, Z. P., Yan, S. Y., et al., 2021. Identification of Eocene Tectonic Transition and Its Geological Significance of Rift Basins Offshore China: A Case Study in Weixi'nan Sag, Beibu Bay Basin. Earth Science, 46(6): 2145-2156 (in Chinese with English abstract).
      Lu, W. Y., Zhu, H. T., Xu, C. G., et al., 2020. Methods and Applications of Level Subdivision of Source-to-Sink System. Earth Science, 45(4): 1327-1336 (in Chinese with English abstract).
      Postma, G., 1990. An Analysis of the Variation in Delta Architecture. Terra Nova, 2(2): 124-130. https://doi.org/10.1111/j.1365-3121.1990.tb00052.x
      Qin, C. Y., 2020. The Paleogene Evolution of Double-Layer Structure and the Response of Sedimentation of Weixi'nan Sag, Beibuwan Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Qin, C. Y., Wang, H., Jiang, P., et al., 2020. Boundary Fault Evolution of Weixinan Sag and Its Effect on Strata Filling. Journal of China University of Mining & Technology, 49(2): 318-327 (in Chinese with English abstract).
      Sømme, T. O., Helland-Hansen, W., Martinsen, O. J., et al., 2009a. Relationships between Morphological and Sedimentological Parameters in Source-to-Sink Systems: A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems. Basin Research, 21(4): 361-387. https://doi.org/10.1111/j.1365-2117.2009.00397.x
      Sømme, T. O., Martinsen, O. J., Thurmond, J. B., 2009b. Reconstructing Morphological and Depositional Characteristics in Subsurface Sedimentary Systems: An Example from the Maastrichtian-Danian Ormen Lange System, Møre Basin, Norwegian Sea. AAPG Bulletin, 93(10): 1347-1377. https://doi.org/10.1306/06010909038
      Sømme, T. O., Jackson, C. A. L., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway: Part 2—Sediment Dispersal and Forcing Mechanisms. Basin Research, 25(5): 512-531. https://doi.org/10.1111/bre.12014
      Stevenson, C. J., Jackson, C. A. L., Hodgson, D. M., et al., 2015. Deep-Water Sediment Bypass. Journal of Sedimentary Research, 85(9): 1058-1081. https://doi.org/10.2110/jsr.2015.63
      Sun, W. H., Wang, R. L., Liu, M. Q., et al., 2010. The Analysis of Well WZ10-8-1 after Drilling in Liushagang Formation, Weixinan Depression, Beibuwan Basin. Inner Mongolia Petrochemical Industry, 36(24): 213-216 (in Chinese with English abstract).
      Sun, Z. H., Zhu, H. T., Xu, C. G., et al., 2020. Reconstructing Provenance Interaction of Multiple Sediment Sources in Continental Down-Warped Lacustrine Basins: An Example from the Bodong Area, Bohai Bay Basin, China. Marine and Petroleum Geology, 113: 104142. https://doi.org/10.1016/j.marpetgeo.2019.104142
      Wang, X. X., Zhu, X. M., Song, S., et al., 2016. "Source-to-Sink" System of the Lower Member 3 of Paleogene Shahejie Formation in Steep Slope Zone of Western Chezhen Sub-Sag, Bohai Bay Basin. Journal of Palaeogeography (Chinese Edition), 18(1): 65-79 (in Chinese with English abstract).
      Wu, S. H., Xiong, Q. H., Gong, Y. J., et al., 1994. Steep and Gentle Slope-Pattern Fan Deltas and Their Potential as Hydrocarbon Reservoir. Acta Petrolei Sinica, 15(S1): 52-59 (in Chinese with English abstract).
      Xu, C. G., 2013. Controlling Sand Principle of Source-Sink Coupling in Time and Space in Continental Rift Basins: Basic Idea, Conceptual Systems and Controlling Sand Models. China Offshore Oil and Gas, 25(4): 1-11, 21, 88 (in Chinese with English abstract).
      Yang, X. B., Zhao, Y. P., Lu, J., et al., 2019. Sedimentary Characteristics and Controlling Factors of Sublacustrine Fans in Sag C, Weixinan Depression, Beibuwan Basin. Geological Science and Technology Information, 38(1): 18-28 (in Chinese with English abstract).
      Zhang, W. X., Zeng, H. L., Zhang, H. F., 1989. Models of Seismic Facies for Continental Mono-Faulted Basins in Eastern China. Petroleum Geology & Expeximent, 11(2): 125-135 (in Chinese with English abstract).
      Zhang, Z. W., Liu, Z. F., Zhang, G. C., et al., 2013. The Chasmic Stage and Structural Evolution Features of Beibuwan Basin. Journal of Oil and Gas Technology, 35(1): 6-10 (in Chinese with English abstract).
      Zhu, H. T., Xu, C. G., Zhu, X. M., et al., 2017. Advances of the Source-to-Sink Units and Coupling Model Research in Continental Basin. Earth Science, 42(11): 1851-1870 (in Chinese with English abstract).
      Zhu, X., Zhu, H. T., Zeng, H. L., et al., 2017. Subdivision, Characteristics, and Varieties of the Source-to-Sink Systems of the Modern Lake Erhai Basin, Yunnan Province. Earth Science, 42(11): 2010-2024 (in Chinese with English abstract).
      陈杰, 刘传虎, 谭明友, 等, 2016. 进积型三角洲交汇区沉积模式: 以东营凹陷沙三中亚段为例. 沉积学报, 34(6): 1187-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201606016.htm
      董桂玉, 何幼斌, 2016. 陆相断陷盆地基准面调控下的古地貌要素耦合控砂机制. 石油勘探与开发, 43(4): 529-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604005.htm
      冯文杰, 芦凤明, 吴胜和, 等, 2018. 断陷湖盆长轴缓坡辫状河三角洲前缘储层构型研究: 以大港枣园油田枣南断块孔一段枣V油组为例. 中国矿业大学学报, 47(2): 367-379. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802017.htm
      葛家旺, 朱筱敏, 雷永昌, 等, 2021. 多幕裂陷盆地构造‒沉积响应及陆丰凹陷实例分析. 地学前缘, 28(1): 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101008.htm
      葛家旺, 朱筱敏, 吴陈冰洁, 等, 2019. 辫状河三角洲沉积特征及成因差异: 以珠江口盆地陆丰凹陷恩平组为例. 石油学报, 40(S1): 139-152. doi: 10.7623/syxb2019S1012
      葛家旺, 朱筱敏, 张向涛, 等, 2018. 珠江口盆地陆丰凹陷文昌组构造‒沉积演化模式. 中国矿业大学学报, 47(2): 308-322. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802012.htm
      胡德胜, 范彩伟, 朱红涛, 等, 2020. 涠西南凹陷流一段高位体系域湖底扇沉积特征及勘探意义. 中国石油勘探, 25(5): 23-31. doi: 10.3969/j.issn.1672-7703.2020.05.004
      姜平, 秦春雨, 杨希冰, 等, 2020. 涠西南凹陷一号断裂陡坡带扇体沉积展布特征及主控因素. 地球科学, 45(2): 534-546. doi: 10.3799/dqkx.2018.369
      李才, 范彩伟, 胡林, 等, 2021. 北部湾盆地涠西南低凸起构造演化特征及其成因. 海相油气地质, 26(4): 319-325. doi: 10.3969/j.issn.1672-9854.2021.04.004
      李顺利, 朱筱敏, 李慧勇, 等, 2017a. 源‒汇系统要素定量表征及耦合模式: 以沙垒田凸起与沙南凹陷沙河街组为例. 中国海上油气, 29(4): 39-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201704005.htm
      李顺利, 朱筱敏, 刘强虎, 等, 2017b. 沙垒田凸起古近纪源‒汇系统中有利储层评价与预测. 地球科学, 42(11): 1994-2009. doi: 10.3799/dqkx.2017.127
      林畅松, 潘元林, 肖建新, 等, 2000. "构造坡折带": 断陷盆地层序分析和油气预测的重要概念. 地球科学, 25(3): 260-266. http://www.earth-science.net/article/id/936
      刘一鸣, 吴智平, 颜世永, 等, 2021. 中国近海裂陷盆地始新世构造变革的厘定及地质意义: 以北部湾盆地涠西南凹陷为例. 地球科学, 46(6): 2145-2156. doi: 10.3799/dqkx.2020.205
      陆威延, 朱红涛, 徐长贵, 等, 2020. 源‒汇系统级次划分方法及应用. 地球科学, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123
      秦春雨, 2020. 北部湾盆地涠西南凹陷古近系双层构造演化及沉积响应(博士学位论文). 武汉: 中国地质大学.
      秦春雨, 王华, 姜平, 等, 2020. 涠西南凹陷边界断层演化及其对地层充填的控制. 中国矿业大学学报, 49(2): 318-327. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202002013.htm
      孙万华, 王瑞丽, 刘明全, 等, 2010. 北部湾盆地涠西南凹陷WZ10-8-1井流沙港组三段勘探实践分析. 内蒙古石油化工, 36(24): 213-216. doi: 10.3969/j.issn.1006-7981.2010.24.099
      王星星, 朱筱敏, 宋爽, 等, 2016. 渤海湾盆地车西洼陷陡坡带古近系沙河街组沙三下段"源‒汇"系统. 古地理学报, 18(1): 65-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201601006.htm
      吴胜和, 熊琦华, 龚姚进, 等, 1994. 陡坡型和缓坡型扇三角洲及其油气储层意义. 石油学报, 15(S1): 52-59. doi: 10.7623/syxb1994S1007
      徐长贵, 2013. 陆相断陷盆地源‒汇时空耦合控砂原理: 基本思想、概念体系及控砂模式. 中国海上油气, 25(4): 1-11, 21, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201304002.htm
      杨希冰, 赵彦璞, 陆江, 等, 2019. 北部湾盆地涠西南凹陷C洼湖底扇沉积特征及控制因素分析. 地质科技情报, 38(1): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901003.htm
      张万选, 曾洪流, 张厚福, 1989. 中国东部陆相单断式盆地地震相模式. 石油实验地质, 11(2): 125-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198902002.htm
      张智武, 刘志峰, 张功成, 等, 2013. 北部湾盆地裂陷期构造及演化特征. 石油天然气学报, 35(1): 6-10. doi: 10.3969/j.issn.1000-9752.2013.01.002
      朱红涛, 徐长贵, 朱筱敏, 等, 2017. 陆相盆地源‒汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870. doi: 10.3799/dqkx.2017.117
      朱秀, 朱红涛, 曾洪流, 等, 2017. 云南洱海现代湖盆源‒汇系统划分、特征及差异. 地球科学, 42(11): 2010-2024. doi: 10.3799/dqkx.2017.128
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)

      Article views (998) PDF downloads(70) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return