• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 12
    Dec.  2023
    Turn off MathJax
    Article Contents
    Zhou Chen'ao, Song Shuguang, 2023. Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt: An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt. Earth Science, 48(12): 4481-4494. doi: 10.3799/dqkx.2022.117
    Citation: Zhou Chen'ao, Song Shuguang, 2023. Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt: An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt. Earth Science, 48(12): 4481-4494. doi: 10.3799/dqkx.2022.117

    Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt: An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt

    doi: 10.3799/dqkx.2022.117
    • Received Date: 2022-02-17
      Available Online: 2024-01-03
    • Publish Date: 2023-12-25
    • The post-collision magmatic activity is of great significance to understand the orogenic collapse, delamination and continental crust growth. In this paper it summarizes the geochronological and geochemical characteristics of post-collisional magmatism at 400-360 Ma in the North Qaidam ultrahigh-pressure metamorphic belt. The granite intrusions have I-type characteristics and were formed by the crust-mantle magmatic mixing. Mafic dykes can be divided into two groups: (1) Intermediate-basic dykes at 392-375 Ma; (2) Ultrabasic dykes about 360 Ma. The geochemical characteristics show that the trace elements and isotopes of mafic dyke are gradually depleted with time, and the mantle source changes from lithospheric mantle to asthenosphere mantle. The mafic magmatic activity is the key of post-collision magmatic activity and orogen collapse. Combining the feature of magmatism after the collision, it proposes a geodynamic model to explain the activities of lithosphere and asthenosphere mantle in post-collision stage about 35 million years (Ma), the unrooting process of orogeny began at slow lithospheric mantle erosion in 395-375 Ma, and ended up with lithosphere delamination and asthenosphere upwelling at 360 Ma. The addition of mantle magma indicates that the post-collision stage is an important period for continental growth in earth history.

       

    • loading
    • Abbassene, F., Chazot, G., Bellon, H., et al., 2016. A 17 Ma Onset for the Post-Collisional K-Rich Calc-Alkaline Magmatism in the Maghrebides: Evidence from Bougaroun (Northeastern Algeria) and Geodynamic Implications. Tectonophysics, 674: 114-134. https://doi.org/10.1016/j.tecto.2016.02.013
      Bénard, A., Arculus, R. J., Nebel, O., et al., 2017. Silica-Enriched Mantle Sources of Subalkaline Picrite-Boninite-Andesite Island Arc Magmas. Geochimica et Cosmochimica Acta, 199: 287-303. https://doi.org/10.1016/j.gca.2016.09.030
      Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
      Cawood, P. A., Kroner, A., 2009. Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, 318(1): 351-372. https://doi.org/10.1144/sp318.0
      Couzinié, S., Laurent, O., Moyen, J. F., et al., 2016. Post-Collisional Magmatism: Crustal Growth not Identified by Zircon Hf-O Isotopes. Earth and Planetary Science Letters, 456: 182-195. https://doi.org/10.1016/j.epsl.2016.09.033
      Dong, J. L., Song, S. G., Su, L., et al., 2019. Onset of the North-South Gravity Lineament, NE China: Constraints of Late Jurassic Bimodal Volcanic Rocks. Lithos, 334-335: 58-68. https://doi.org/10.1016/j.lithos.2019.03.016
      England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/jb094ib12p17561
      Fitton, J. G., James, D., Kempton, P. D., et al., 1988. The Role of Lithospheric Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States. Journal of Petrology, Special_Volume(1): 331-349. https://doi.org/10.1093/petrology/special_volume.1.331
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. https://doi.org/10.1038/nature03162
      Griffin, W. L., O'Reilly, S. Y., Afonso, J. C., et al., 2009. The Composition and Evolution of Lithospheric Mantle: A Re-Evaluation and Its Tectonic Implications. Journal of Petrology, 50(7): 1185-1204. https://doi.org/10.1093/petrology/egn033
      Handy, M. R., Schmid, S. M., Bousquet, R., et al., 2010. Reconciling Plate-Tectonic Reconstructions of Alpine Tethys with the Geological-Geophysical Record of Spreading and Subduction in the Alps. Earth-Science Reviews, 102(3-4): 121-158. https://doi.org/10.1016/j.earscirev.2010.06.002
      Houseman, G. A., McKenzie, D. P., Molnar, P., 1981. Convective Instability of a Thickened Boundary Layer and Its Relevance for the Thermal Evolution of Continental Convergent Belts. Journal of Geophysical Research: Solid Earth, 86(B7): 6115-6132. https://doi.org/10.1029/jb086ib07p06115
      Huw Davies, J., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s
      Karsli, O., Chen, B., Aydin, F., et al., 2007. Geochemical and Sr-Nd-Pb Isotopic Compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for Magma Interaction in the Genesis of High-K Calc-Alkaline Granitoids in a Post-Collision Extensional Setting. Lithos, 98(1-4): 67-96. https://doi.org/10.1016/j.lithos.2007.03.005
      Le Maitre, R. W., 1989. A Classification of Igneous Rocks and Glossary Terms (2nd Edition). Blackwell Scientific Publications, Oxford, 193.
      Liégeois, J. P., Navez, J., Hertogen, J., et al., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic versus Alkaline and Peralkaline Granitoids. the Use of Sliding Normalization. Lithos, 45(1-4): 1-28. https://doi.org/10.1016/s0024-4937(98)00023-1
      Mattinson, C. G., Wooden, J. L., Liou, J. G., et al., 2006. Geochronology and Tectonic Significance of Middle Proterozoic Granitic Orthogneiss, North Qaidam HP/UHP Terrane, Western China. Mineralogy and Petrology, 88(1-2): 227-241. https://doi.org/10.1007/s00710-006-0149-1
      Mo, X. X., 2020. Growth and Evolution of Crust of Tibetan Plateau from Perspective of Magmatic Rocks. Earth Science, 45(7): 2245-2257(in Chinese with English abstract).
      Molnar, P., Houseman, G. A., Conrad, C. P., 1998. Rayleigh-Taylor Instability and Convective Thinning of Mechanically Thickened Lithosphere: Effects of Non-Linear Viscosity Decreasing Exponentially with Depth and of Horizontal Shortening of the Layer. Geophysical Journal International, 133(3): 568-584. https://doi.org/10.1046/j.1365-246x.1998.00510.x
      Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth: A Testable Hypothesis. Earth-Science Reviews, 127: 96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Prelević, D., Akal, C., Foley, S. F., et al., 2012. Ultrapotassic Mafic Rocks as Geochemical Proxies for Post-Collisional Dynamics of Orogenic Lithospheric Mantle: The Case of Southwestern Anatolia, Turkey. Journal of Petrology, 53(5): 1019-1055. https://doi.org/10.1093/petrology/egs008
      Saunders, A. D., Storey, M., Kent, R. W., et al., 1992. Consequences of Plume-Lithosphere Interactions. Geological Society, London, Special Publications, 68(1): 41-60. https://doi.org/10.1144/gsl.sp.1992.068.01.04
      Song, S. G., Niu, Y. L., Su, L., et al., 2014a. Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 129: 59-84. https://doi.org/10.1016/j.earscirev.2013.11.010
      Song, S. G., Niu, Y. L., Su, L., et al., 2014b. Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting during Exhumation in Response to Continental Collision. Geochimica et Cosmochimica Acta, 130: 42-62. https://doi.org/10.1016/j.gca.2014.01.008
      Song, S. G., Su, L., Li, X. H., et al., 2012. Grenville-Age Orogenesis in the Qaidam-Qilian Block: The Link between South China and Tarim. Precambrian Research, 220: 9-22.
      Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science China Earth Sciences, 58(8): 1284-1304. https://doi.org/10.1007/s11430-015-5102-x
      Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2005. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1-2): 99-118. https://doi.org/10.1016/j.epsl.2005.02.036
      Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2006. Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 47(3): 435-455. https://doi.org/10.1093/petrology/egi080
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Thomas, W. A., 1983. Continental Margins, Orogenic Belts, and Intracratonic Structures. Geology, 11(5): 270-272. https://doi.org/10.1130/0091-7613(1983)11270:cmobai>2.0.co;2 doi: 10.1130/0091-7613(1983)11270:cmobai>2.0.co;2
      Topuz, G., Okay, A. I., Altherr, R., et al., 2011. Post-Collisional Adakite-Like Magmatism in the Ağvanis Massif and Implications for the Evolution of the Eocene Magmatism in the Eastern Pontides (NE Turkey). Lithos, 125(1-2): 131-150. https://doi.org/10.1016/j.lithos.2011.02.003
      Torsvik, T. H., Smethurst, M. A., Meert, J. G., et al., 1996. Continental Break-up and Collision in the Neoproterozoic and Palaeozoic: A Tale of Baltica and Laurentia. Earth-Science Reviews, 40(3-4): 229-258. https://doi.org/10.1016/0012-8252(96)00008-6
      Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210-211: 181-198. https://doi.org/10.1016/j.lithos.2014.10.006
      Williams, H., Turner, S., Kelley, S., et al., 2001. Age and Composition of Dikes in Southern Tibet: New Constraints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism. Geology, 29(4): 339. https://doi.org/10.1130/0091-7613(2001)0290339:aacodi>2.0.co;2 doi: 10.1130/0091-7613(2001)0290339:aacodi>2.0.co;2
      Wu, C. L., Gao, Y. H., Li, Z. L., et al., 2014. Zircon SHRIMP Dating of Dulan Granite and Granite Chronological Framework of Ultra-High Pressure Belt in Northern Qaidam Basin. Scientia Sinica (Terrae), 44(10): 2142-2165(in Chinese). doi: 10.1360/zd-2014-44-10-2142
      Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2007. Zircon SHRIMP U-Pb Dating of Granites from the Da Qaidam Area in the North Margin of Qaidam Basin, NW China. Acta Petrologica Sinica, 23(8): 1861-1875(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.08.008
      Xiong, Q., Griffin, W. L., Zheng, J. P., et al., 2015. Episodic Refertilization and Metasomatism of Archean Mantle: Evidence from an Orogenic Peridotite in North Qaidam (NE Tibet, China). Contributions to Mineralogy and Petrology, 169(3): 31. https://doi.org/10.1007/s00410-015-1126-7
      Xu, W. L., Zhao, Z. F., Dai, L. Q., 2020. Post-Collisional Mafic Magmatism: Record of Lithospheric Mantle Evolution in Continental Orogenic Belt. Scientia Sinica (Terrae), 50(12): 1906-1918(in Chinese). doi: 10.1360/SSTe-2019-0267
      Yang, L. M., Song, S. G., Su, L., et al., 2019. Heterogeneous Oceanic Arc Volcanic Rocks in the South Qilian Accretionary Belt (Qilian Orogen, NW China). Journal of Petrology, 60(1): 85-116. https://doi.org/10.1093/petrology/egy107
      Yang, S. X., Su, L., Song, S. G., et al., 2020. Melting of Subducted Continental Crust during Collision and Exhumation: Insights from Granitic Rocks from the North Qaidam UHP Metamorphic Belt, NW China. Lithos, 378-379: 105794. https://doi.org/10.1016/j.lithos.2020.105794
      Yu, S. Y., Li, S. Z., Zhang, J. X., et al., 2019. Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision: A Review of the North Qaidam UHP Belt, NW China. Earth-Science Reviews, 191: 190-211. https://doi.org/10.1016/j.earscirev.2019.02.016
      Zhang, Y. J., Sun, F. Y., Xu, C. H., et al., 2016. Geochronology, Geochemistry and Zircon Hf Isotopes of the Tanjianshan Granite Porphyry Intrusion in Dachaidan Area of the North Margin of Qaidam Basin, NW China. Earth Science, 41(11): 1830-1844(in Chinese with English abstract).
      Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      Zhao, Z. X., Wei, J. H., Santosh, M., et al., 2018. Late Devonian Postcollisional Magmatism in the Ultrahigh-Pressure Metamorphic Belt, Xitieshan Terrane, NW China. GSA Bulletin, 130(5-6): 999-1016. https://doi.org/10.1130/b31772.1
      Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 62(1-2): 105-161. https://doi.org/10.1016/s0012-8252(02)00133-2
      Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2): 127-150. https://doi.org/10.1016/j.lithos.2006.10.003
      Zhou, C. N., Song, S. G., Allen, M. B., et al., 2021. Post-Collisional Mafic Magmatism: Insights into Orogenic Collapse and Mantle Modification from North Qaidam Collisional Belt, NW China. Lithos, 398/399: 106311. https://doi.org/10.1016/j.lithos.2021.106311
      莫宣学, 2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257. doi: 10.3799/dqkx.2020.160
      吴才来, 郜源红, 李兆丽, 等, 2014. 都兰花岗岩锆石SHRIMP定年及柴北缘超高压带花岗岩年代学格架. 中国科学: 地球科学, 44(10): 2142-2165.
      吴才来, 郜源红, 吴锁平, 等, 2007. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年. 岩石学报, 23(8): 1861-1875.
      许文良, 赵子福, 戴立群, 2020. 碰撞后镁铁质岩浆作用: 大陆造山带岩石圈地幔演化的物质记录. 中国科学: 地球科学, 50(12): 1906-1918.
      张延军, 孙丰月, 许成瀚, 等, 2016. 柴北缘大柴旦滩间山花岗斑岩体锆石U-Pb年代学、地球化学及Hf同位素. 地球科学, 41(11): 1830-1844. doi: 10.3799/dqkx.2016.127
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(1)

      Article views (779) PDF downloads(122) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return