Citation: | Wu Bo, Qiu Weixing, Xu Shixiang, Cai Junhua, Li Yicai, Zhang Yao, 2024. A Method for Assessing Probability of Tunnel Collapse Based on Artificial Intelligence Deformation Prediction. Earth Science, 49(11): 4204-4215. doi: 10.3799/dqkx.2022.147 |
Adoko, A. C., Jiao, Y. Y., Wu, L., et al., 2013. Predicting Tunnel Convergence Using Multivariate Adaptive Regression Spline and Artificial Neural Network. Tunnelling and Underground Space Technology, 38: 368-376. https://doi.org/10.1016/j.tust.2013.07.023
|
Cai, B., Liu, Y., Fan, Q., et al., 2014. Multi-Source Information Fusion Based Fault Diagnosis of Ground-Source Heat Pump Using Bayesian Network. Applied Energy, 114: 1-9. https://doi.org/10.1016/j.apenergy.2013.09.043
|
Chen, F., Zhang, W., 2021. Influence of Spatial Variability on the Uniaxial Compressive Responses of Rock Pillar Based on 3D Random Field. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(3): 04021035. https://doi.org/10.1061/AJRUA6.0001162
|
Chen, F. Y., Zhang, W. G., 2022. Reliability Analysis of Lijiaping Metro Tunnel Based on Conditional Random Field, Chongqing. Journal of Basic Science and Engineering, 30(1): 166-182 (in Chinese with English abstract).
|
Chen, X., Li, L., Wang, L., et al., 2019. The Current Situation and Prevention and Control Countermeasures for Typical Dynamic Disasters in Kilometer-Deep Mines in China. Safety Science, 115: 229-236. doi: 10.1016/j.ssci.2019.02.010
|
Duong, P. L. T., Park, H., Raghavan, N., 2018. Application of Multi-Output Gaussian Process Regression for Remaining Useful Life Prediction of Light Emitting Diodes. Microelectronics Reliability, 88-90: 80-84. https://doi.org/10.1016/j.microrel.2018.07.106
|
Gravina, R., Alinia, P., Ghasemzadeh, H., et al., 2017. Multi-Sensor Fusion in Body Sensor Networks: State-of-the-Art and Research Challenges. Information Fusion, 35: 68-80. https://doi.org/10.1016/j.inffus.2016.09.005
|
Guo, K., Zhang, L., 2021. Multi-Source Information Fusion for Safety Risk Assessment in Underground Tunnels. Knowledge-Based Systems, 227: 107210. https://doi.org/10.1016/j.knosys.2021.107210
|
Huang, X., Liu, Q., Liu, H., et al., 2018. Development and In-Situ Application of a Real-Time Monitoring System for the Interaction between TBM and Surrounding Rock. Tunnelling and Underground Space Technology, 81: 187-208. https://doi.org/10.1016/j.tust.2018.07.018
|
Li, C., Xu, J., Pan, J., et al., 2012. Plastic Zone Distribution Laws and Its Types of Surrounding Rock in Large-Span Roadway. International Journal of Mining Science and Technology, 22: 23-28. https://doi.org/10.1016/j.ijmst.2011.06.002
|
Li, D., Liu, C., Gan, W., 2009. A New Cognitive Model: Cloud Model. International Journal of Intelligent Systems, 24: 357-375. https://doi.org/10.1002/int.20340
|
Li, T., De la Prieta Pintado, F., Corchado, et al., 2017. Multi-Source Homogeneous Data Clustering for Multi-Target Detection from Cluttered Background with Misdetection. Applied Soft Computing, 60: 436-446. https://doi.org/10.1016/j.asoc.2017.07.012
|
Lim, S. L. H., Duong, P. L. T., Park, H., et al., 2020. Assessing Multi-Output Gaussian Process Regression for Modeling of Non-Monotonic Degradation Trends of Light Emitting Diodes in Storage. Microelectronics Reliability, 114: 113794. https://doi.org/10.1016/j.microrel.2020.113794
|
Liu, K., Liu, B., 2019. Intelligent Information-Based Construction in Tunnel Engineering Based on the GA and CCGPR Coupled Algorithm. Tunnelling and Underground Space Technology, 88: 113-128. https://doi.org/10.1016/j.tust.2019.02.012
|
Saadi, I., Farooq, B., Mustafa, A., et al., 2018. An Efficient Hierarchical Model for Multi-Source Information Fusion. Expert Systems with Applications, 110: 352-362. doi: 10.1016/j.eswa.2018.06.018
|
Xue, X., Xiao, M., 2017. Deformation Evaluation on Surrounding Rocks of Underground Caverns Based on PSO-LSSVM. Tunnelling and Underground Space Technology, 69: 171-181. https://doi.org/10.1016/j.tust.2017.06.019
|
Yan, X. H., Guo, C. B., Liu, Z. B., et al., 2022. Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6): 2081-2093(in Chinese with English abstract).
|
Yang, Y., Jing, Z., Gao, T., et al., 2007. Multi-Sources Information Fusion Algorithm in Airborne Detection Systems. Journal of Systems Engineering and Electronics, 18: 171-176. https://doi.org/10.1016/S1004-4132(07)60070-X
|
Zhang, G. H., Chen, W., Jiao, Y. Y., et al., 2020. A Failure Probability Evaluation Method for Collapse of Drill-and-Blast Tunnels Based on Multistate Fuzzy Bayesian Network. Engineering Geology, 276: 105752. https://doi.org/10.1016/j.enggeo.2020.105752
|
Zhang, L., Wu, X., Ding, L., et al., 2013a. A Novel Model for Risk Assessment of Adjacent Buildings in Tunneling Environments. Building and Environment, 65: 185-194. https://doi.org/10.1016/j.buildenv.2013.04.008
|
Zhang, Y., Zhang, H., Nasrabadi, N. M., et al., 2013b. Multi-Metric Learning for Multi-Sensor Fusion Based Classification. Information Fusion, 14: 431-440. https://doi.org/10.1016/j.inffus.2012.05.002
|
Zhang, L., Wu, X., Zhu, H., et al., 2017. Perceiving Safety Risk of Buildings Adjacent to Tunneling Excavation: An Information Fusion Approach. Automation in Construction, 73: 88-101. https://doi.org/10.1016/j.autcon.2016.09.003
|
陈福勇, 仉文岗, 2022. 基于条件随机场的重庆李家坪地铁隧道可靠度分析. 应用基础与工程科学学报, 30(1): 166-182.
|
严孝海, 郭长宝, 刘造保, 等, 2022. 四川康定某深埋隧道花岗岩岩爆物理模拟实验研究. 地球科学, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153
|