• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 6
    Jun.  2023
    Turn off MathJax
    Article Contents
    Liu Bin, Wu Lianhua, Ma Changqian, Xu Yu, Li Fulin, Zhan Junming, Huang Jian, Sun Yang, 2023. Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt. Earth Science, 48(6): 2398-2414. doi: 10.3799/dqkx.2022.188
    Citation: Liu Bin, Wu Lianhua, Ma Changqian, Xu Yu, Li Fulin, Zhan Junming, Huang Jian, Sun Yang, 2023. Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt. Earth Science, 48(6): 2398-2414. doi: 10.3799/dqkx.2022.188

    Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt

    doi: 10.3799/dqkx.2022.188
    • Received Date: 2022-05-05
    • Publish Date: 2023-06-25
    • Investigations and studies on syn- exhumation or post-collisional magmatic rocks can provide key clues to understanding the crust-mantle interactions during the continental subduction and exhumation, and the tectonic evolution of collisional orogenic belts. In this paper it presents a comprehensive research of zircon U-Pb geochronology, petrology, geochemistry and isotopic geology for the syn-exhumation intermediate rocks in the east part of the East Kunlun orogenic belt. And the data could offer new insights into the generation of the syn-exhumation magmatism and the proto-Tethyan tectonic evolution. The results reveal that the Balong and Jinshuikou intermediate rocks yield zircon U-Pb ages of 420 Ma and 405 Ma, respectively, which overlap the exhumation timing of eclogites. The Balong diorite-porphyrite samples have relatively low MgO and Mg# with high K2O, while the Jinshuikou diorite samples have relatively high MgO and Mg# with high Na2O. The Balong diorite-porphyrite samples exhibit decreasing ratios of Nb/La with decreasing Mg#, similar to the features of assimilation and fractional crystallization (AFC). And all of them are plotted on the curve of fractional crystallization. However, the Jinshuikou diorite samples do not show positive correlation between Nb/La and Mg#, and those samples are plotted on the curve of partial melting. In addition, the Balong diorite-porphyrite samples have relatively higher Isr ratios and lower εNd(t) values than those of the Jinshuikou diorite samples. Based on the new petrological, geochemical and isotopic compositions, it concludes that the Balong diorite-porphyrite and the Jinshuikou diorite were respectively derived from basaltic magma differentiation and contamination, and partial melting of the lower crustal basaltic rocks. Combining with new regional studies, it proposes that those intermediate rocks might be formed in a post-collisional extension environment, and slab break-off is the critical factor for triggering the Silurian to Devonian syn-exhumation magmatism. The continental collision and the continental subduction in the East Kunlun region should have initiated at ~440 Ma.

       

    • loading
    • Ao, C., Sun, F. Y., Li, B. L., et al., 2014. Geochemistry, Zircon U-Pb Dating and Geological Significance of Diorite Porphyrite in Xiarihamu Deposit, Eastern Kunlun Orogenic Belt, Qinghai. Northwestern Geology, 47(1): 96-106(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2014.01.007
      Ba, J., Chen, N. S., Wang, Q. Y., et al., 2012. Nd-Sr-Pb Isotopic Compositions of Cordierite Granite on Southern Margin of the Qaidam Block, NW China, and Constraints on Its Petrogenesis, Tectonic Affinity of Source Region and Tectonic Implications. Earth Science, 37(Suppl. 1): 80-92(in Chinese with English abstract).
      Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
      Castillo, P. R., 2012. Adakite Petrogenesis. Lithos, 134/135: 304-316. https://doi.org/10.1016/j.lithos.2011.09.013
      Chen, N. S., He, L., Sun, M., et al., 2002. Precise Definition of Early Paleozoic Metamorphic Peak Period and Thrust Tectonic Deformation Age in East Kunlun Orogenic Belt. Chinese Science Bulletin, 47(8): 628-631(in Chinese). doi: 10.1360/csb2002-47-8-628
      Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.03.013
      Cui, M. H., Meng, F. C., Wu, X. K., 2011. Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun: Evidences from Geochemistry, Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks. Acta Petrologica Sinica, 27(11): 3365-3379(in Chinese with English abstract).
      Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s
      Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0
      Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926-944. https://doi.org/10.1016/j.gr.2010.09.006
      Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. https://doi.org/10.1038/nature03162
      Gao, X. F., Xiao, P. X., Xie, C. R., et al., 2010. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China. Geological Bulletin of China, 29(7): 1001-1008(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.07.005
      Guo, X. Z., Jia, Q. Z., Li, J. C., et al., 2018. Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12): 4300-4318(in Chinese with English abstract).
      Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 25(1): 42-44. https://doi.org/10.1130/0091-7613(1997)0250042:meolku>2.3.co;2 doi: 10.1130/0091-7613(1997)0250042:meolku>2.3.co;2
      Kepezhinskas, P., Defant, M. J., Drummond, M. S., 1996. Progressive Enrichment of Island Arc Mantle by Melt-Peridotite Interaction Inferred from Kamchatka Xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217-1229. https://doi.org/10.1016/0016-7037(96)00001-4
      Li, H. K., Lu, S. N., Xiang, Z. Q., et al., 2006. SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area, Central Eastern Kunlun Suture Zone. Earth Science Frontiers, 13(6): 311-321(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2006.06.034
      Liu, B., 2011. Petrology, Zircon U-Pb Geochronology, and Petrogenesis of Early Devonian Yuejinshan Intrusive Complex in the Eastern Kunlun Orogen (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Liu, B., Ma, C. Q., Guo, P., et al., 2013a. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications. Earth Science, 38(5): 947-962(in Chinese with English abstract). http://doi.org/10.3799/dqkx.2013.093.
      Liu, B., Ma, C. Q., Jiang, H. A., et al., 2013b. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106(in Chinese with English abstract).
      Liu, B., Ma, C. Q., Tang, Y. J., et al., 2021. Triassic High-Mg Andesitic Magmatism Induced by Sediment Melt-Peridotite Interactions in the Central Tibetan Plateau. Lithos, 398-399: 106266. https://doi.org/10.1016/j.lithos.2021.106266
      Liu, B., Ma, C. Q., Zhang, J. Y., et al., 2012. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes. Acta Petrologica Sinica, 28(6): 1785-1807(in Chinese with English abstract).
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016
      Lu, H. F., Chen, J., Yu, F. C., et al., 2019. Study of Genesis and Geodynamic Setting of Diorite-Porphyrite in Xiarihamu Area: Constraints from Geochronology, Geochemistry and Hf Isotopic Data. Mineralogy and Petrology, 39(4): 61-68(in Chinese with English abstract).
      Lu, L., Wu, Z. H., Hu, D. G., et al., 2010. Zircon U-Pb Age for Rhyolite of the Maoniushan Formation and Its Tectonic Significance in the East Kunlun Mountains. Acta Petrologica Sinica, 26(4): 1150-1158(in Chinese with English abstract).
      Luo, M. F., 2015. Spatial-Temporal Patten and Geological Implications of Early Paleozoic-Early Mesozoic Granitoids in the East Kunlun Orogenic Belt (Eastern Segment) (Dissertation). China University of Geosciences, Beijing, 169(in Chinese with English abstract).
      Meng, F. C., Zhang, J. X., Cui, M. H., 2013. Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance. Gondwana Research, 23(2): 825-836. https://doi.org/10.1016/j.gr.2012.06.007
      Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2
      Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2007.03.010
      Qi, S. S., 2015. Petrotectonic Assemblages and Tectonic Evolution of the East Kunlun Orogenic Belt in Qinghai Province (Dissertation). China University of Geosciences, Beijing, 343(in Chinese with English abstract).
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4
      Sakuyama, M., 1981. Petrological Study of the Myoko and Kurohime Volcanoes, Japan: Crystallization Sequence and Evidence for Magma Mixing. Journal of Petrology, 22(4): 553-583. https://doi.org/10.1093/petrology/22.4.553
      Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/BF00283225
      Smith, D. C., 1984. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics. Nature, 310: 641-644. https://doi.org/10.1038/310641a0
      Sobolev, N. V., Shatsky, V. S., 1990. Diamond Inclusions in Garnets from Metamorphic Rocks: A New Environment for Diamond Formation. Nature, 343: 742-746. https://doi.org/10.1038/343742a0
      Song, S. G., Bi, H. Z., Qi, S. S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043-2060. https://doi.org/10.1093/petrology/egy089
      Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc Crust: A Review. Lithos, 170-171: 208-223. https://doi.org/10.1016/j.lithos.2013.02.016
      Tamura, Y., Sato, T., Fujiwara, T., et al., 2016. Advent of Continents: A New Hypothesis. Scientific Reports, 6: 33517. https://doi.org/10.1038/srep33517
      Tang, Y. J., Liu, B., Li, M. J., et al., 2020. Origin of Devonian Mafic Magmatism in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Exhumation. Geological Magazine, 157(8): 1265-1280. https://doi.org/10.1017/s0016756819001353
      Taniuchi, H., Kuritani, T., Nakagawa, M., 2020. Generation of Calc-Alkaline Andesite Magma through Crustal Melting Induced by Emplacement of Mantle-Derived Water-Rich Primary Magma: Evidence from Rishiri Volcano, Southern Kuril Arc. Lithos, 354-355: 105362. https://doi.org/10.1016/j.lithos.2019.105362
      van Hunen, J., Allen, M. B., 2011. Continental Collision and Slab Break-Off: A Comparison of 3-D Numerical Models with Observations. Earth and Planetary Science Letters, 302(1-2): 27-37. https://doi.org/10.1016/j.epsl.2010.11.035
      Wang, G. C., Wei, Q. R., Jia, C. X., et al., 2007. Some Ideas of Precambrian Geology in the East Kunlun, China. Geological Bulletin of China, 26(8): 929-937(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2007.08.003
      Wang, T., Li, B., Chen, J., et al., 2016. Characteristics of Chronology and Geochemistry of the Early Silurian Monzagranite in the Wulonggou Area, East Kunlun and Its Geological Significance. Journal of Mineralogy and Petrology, 36(2): 62-70(in Chinese with English abstract).
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      Xin, W., Sun, F. Y., Li, L., et al., 2018. The Wulonggou Metaluminous A2-Type Granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of Subduction-Related Felsic Crust and Implications for Post-Collision Extension. Lithos, 312-313: 108-127. https://doi.org/10.1016/j.lithos.2018.05.005
      Xiong, F. H., Ma, C. Q., Jiang, H. A., et al., 2013. Petrogenetic and Tectonic Significance of Permian Calc-Alkaline Lamprophyres, East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau. International Geology Review, 55(14): 1817-1834. https://doi.org/10.1080/00206814.2013.804683
      Xu, Z. Q., Yang, J. S., Li, W. C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860(in Chinese with English abstract).
      Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2-3): 160-173. https://doi.org/10.1016/j.jseaes.2005.09.016
      Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. https://doi.org/10.1016/0040-1951(95)00199-9
      Yu, N., Jin, W., Ge, W. C., et al., 2005. Geochemical Study on Peraluminous Granite from Jinshuikou in East Kunlun. World Geology, 24(2): 123-128(in Chinese with English abstract).
      Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2014. Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China: Response to Continental Collision and Slab Break-Off. Lithos, 210-211: 129-146. https://doi.org/10.1016/j.lithos.2014.10.003
      Zhang, K. J., Tang, X. C., Wang, Y., et al., 2011. Geochronology, Geochemistry, and Nd Isotopes of Early Mesozoic Bimodal Volcanism in Northern Tibet, Western China: Constraints on the Exhumation of the Central Qiangtang Metamorphic Belt. Lithos, 121(1-4): 167-175. https://doi.org/10.1016/j.lithos.2010.10.015
      Zhang, X. Z., Zhou, H. Y., Qian, S. P., 2021. Reviews on Genesis of Magmatic Arc Andesite in Subduction Zone. Advances in Earth Science, 36(3): 288-306(in Chinese with English abstract).
      Zhang, Y. F., Pei, X. Z., Ding, S. P., et al., 2010. LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County, Eastern Section of the East Kunlun Orogenic Belt, China and Its Significance. Geological Bulletin of China, 29(1): 79-85(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.01.010
      Zhang, Z. W., Qian, B., Li, W. Y., et al., 2017. The Discovery of Early Paleozoic Eclogite from the Xiarihamu Magmatic Ni-Cu Sulfide Deposit in Eastern Kunlun Orogenic Belt: Zircon U-Pb Chronologic Evidence. Geology in China, 44(4): 816-817(in Chinese with English abstract).
      Zhang, Z. W., Wang, C. Y., Qian, B., et al., 2018. The Geochemistry Characteristics of Silurian Gabbro in East Kunlun Orogenic Belt and Its Mineralization Relationship with Magmatic Ni-Cu Sulfide Deposit. Acta Petrologica Sinica, 34(8): 2262-2274(in Chinese with English abstract).
      Zhao, Z. F., Dai, L. Q., Zheng, Y. F., 2013. Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction. Scientific Reports, 3: 3413. https://doi.org/10.1038/srep03413
      Zhao, Z. M., Ma, H. D., Wang, B. Z., et al., 2008. The Evidence of Intrusive Rocks about Collision-Orogeny during Early Devonian in Eastern Kunlun Area. Geological Review, 54(1): 47-56(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2008.01.006
      Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.982
      Zhou, B., Dong, Y. P., Zhang, F. F., et al., 2016. Geochemistry and Zircon U-Pb Geochronology of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Origin and Tectonic Implications. Journal of Asian Earth Sciences, 130: 265-281. https://doi.org/10.1016/j.jseaes.2016.08.011
      奥琮, 孙丰月, 李碧乐, 等, 2014. 青海夏日哈木矿区中泥盆世闪长玢岩锆石U-Pb年代学、地球化学及其地质意义. 西北地质, 47(1): 96-106. doi: 10.3969/j.issn.1009-6248.2014.01.007
      巴金, 陈能松, 王勤燕, 等, 2012. 柴南缘堇青石花岗岩的Nd-Sr-Pb同位素组成及其对岩石成因、源区构造属性和构造演化的启示. 地球科学, 37(增刊1): 80-92. doi: 10.3799/dqkx.2012.S1.008
      陈能松, 何蕾, 孙敏, 等, 2002. 东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定. 科学通报, 47(8): 628-631. doi: 10.3321/j.issn:0023-074X.2002.08.016
      陈有炘, 裴先治, 李瑞保, 等, 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510-521. doi: 10.3969/j.issn.1000-8527.2011.03.013
      崔美慧, 孟繁聪, 吴祥珂, 2011. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据. 岩石学报, 27(11): 3365-3379. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111017.htm
      高晓峰, 校培喜, 谢从瑞, 等, 2010. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 29(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005
      国显正, 贾群子, 李金超, 等, 2018. 东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义. 地球科学, 43(12): 4300-4318. doi: 10.3799/dqkx.2018.142
      李怀坤, 陆松年, 相振群, 等, 2006. 东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究. 地学前缘, 13(6): 311-321. doi: 10.3321/j.issn:1005-2321.2006.06.034
      刘彬, 2011. 东昆仑跃进山早泥盆世侵入杂岩体岩石学、锆石U-Pb年代学及岩石成因(硕士学位论文). 武汉: 中国地质大学, 72.
      刘彬, 马昌前, 郭盼, 等, 2013a. 东昆仑中泥盆世A型花岗岩的确定及其构造意义. 地球科学, 38(5): 947-962. doi: 10.3799/dqkx.2013.093
      刘彬, 马昌前, 蒋红安, 等, 2013b. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306018.htm
      刘彬, 马昌前, 张金阳, 等, 2012. 东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示. 岩石学报, 28(6): 1785-1807. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206008.htm
      鲁海峰, 陈静, 余福承, 等, 2019. 东昆仑夏日哈木闪长玢岩成因及动力学背景: 年代学、地球化学及Hf同位素约束. 矿物岩石, 39(4): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202206008.htm
      陆露, 吴珍汉, 胡道功, 等, 2010. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义. 岩石学报, 26(4): 1150-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004013.htm
      罗明非, 2015. 东昆仑东段早古生代—早中生代花岗岩类时空格架及构造意义(博士学位论文). 北京: 中国地质大学, 169.
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm
      祁生胜, 2015. 青海省东昆仑造山带火成岩岩石构造组合与构造演化(博士学位论文). 北京: 中国地质大学, 343.
      王国灿, 魏启荣, 贾春兴, 等, 2007. 关于东昆仑地区前寒武纪地质的几点认识. 地质通报, 26(8): 929-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708002.htm
      王涛, 李彬, 陈静, 等, 2016. 东昆仑五龙沟地区早志留世花岗岩锆石年代学、地球化学特征及其地质意义. 矿物岩石, 36(2): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201602008.htm
      许志琴, 杨经绥, 李文昌, 等, 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306002.htm
      余能, 金巍, 葛文春, 等, 2005. 东昆仑金水口过铝花岗岩的地球化学研究. 世界地质, 24(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200502004.htm
      张晓智, 周怀阳, 钱生平, 2021. 俯冲带岩浆弧安山岩的成因研究进展. 地球科学进展, 36(3): 288-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202103006.htm
      张亚峰, 裴先治, 丁仨平, 等, 2010. 东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义. 地质通报, 29(1): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201709012.htm
      张照伟, 钱兵, 李文渊, 等, 2017. 东昆仑夏日哈木铜镍矿区发现早古生代榴辉岩: 锆石U-Pb定年证据. 中国地质, 44(4): 816-817. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001024.htm
      张照伟, 王驰源, 钱兵, 等, 2018. 东昆仑志留纪辉长岩地球化学特征及与铜镍成矿关系探讨. 岩石学报, 34(8): 2262-2274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201808005.htm
      赵振明, 马华东, 王秉璋, 等, 2008. 东昆仑早泥盆世碰撞造山的侵入岩证据. 地质论评, 54(1): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200801007.htm
      郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(4)

      Article views (966) PDF downloads(112) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return