• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Hu Jinzheng, Zhang Jie, Huang Hongwei, Zheng Jianguo, 2023. Value of Information Assessment and Optimization of Slope Boreholes. Earth Science, 48(5): 1977-1988. doi: 10.3799/dqkx.2022.216
    Citation: Hu Jinzheng, Zhang Jie, Huang Hongwei, Zheng Jianguo, 2023. Value of Information Assessment and Optimization of Slope Boreholes. Earth Science, 48(5): 1977-1988. doi: 10.3799/dqkx.2022.216

    Value of Information Assessment and Optimization of Slope Boreholes

    doi: 10.3799/dqkx.2022.216
    • Received Date: 2022-06-28
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • The conventional method to optimize the slope investigation program is usually assigned with complicated concept and arduous computational efforts. Also, the quantitative evaluation of slope failure loss is required, which is not convenient in practice. In this paper it aims to solve the above problem with a suggested method based on training of response surface-based machine learning model with incomplete features. The relationship between the factor of safety and the site investigation data is established. Then a prediction function is imported and calibrated with simulated samples. This method adopts the root mean square error of factor of safety as the indicator to assess the effectiveness of slope borehole program. The algorithm is provided and applied in an illustrative example of an undrained slope. The results accord well with those reported in literatures. The suggested method provides an efficient way to assess the effectiveness of site investigation program for slope. It has the characteristics of clear concept, simple algorithm and convenient calculation. Also the computational efforts are greatly reduced. This method will be more acceptable for practitioners.

       

    • loading
    • Au, S. K., Beck, J. L., 2001. Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation. Probabilistic Engineering Mechanics, 16(4): 263-277. doi: 10.1016/S0266-8920(01)00019-4
      Blitzstein, J. K., Hwang, J., 2019. Introduction to Probability (2nd Edition). Chapman and Hall/CRC, New York.
      Cho, S.E., 2010. Probabilistic Assessment of Slope Stability That Considers the Spatial Variability of Soil Properties. Journal of Geotechnical and Geoenvironmental Engineering, 136(7): 975-984. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309
      Fu, F.Y., Zheng, X.Y., Lü, Q., et al., 2014. Second Order Reliability Analysis of Slope Stability Using Response Surface Method. Rock and Soil Mechanics, 35(12): 3460-3466 (in Chinese with English abstract).
      Goldsworthy, J.S., Jaksa, M.B., Fenton, G.A., et al., 2007. Effect of Sample Location on the Reliability Based Design of Pad Foundations. Georisk, 1(3): 155-166. http://www.onacademic.com/detail/journal_1000037205077710_de8a.html
      Gong, W., Juang, C.H., Wasowski, J., 2021. Geohazards and Human Settlements: Lessons Learned from Multiple Relocation Events in Badong, China: Engineering Geologist's Perspective. Engineering Geology, 285: 106051. doi: 10.1016/j.enggeo.2021.106051
      Gong, W., Luo, Z., Juang, C.H., et al., 2014. Optimization of Site Exploration Program for Improved Prediction of Tunneling-Induced Ground Settlement in Clays. Computers and Geotechnics, 56: 69-79. https://doi.org/10.1016/j.compgeo.2013.10.008
      Green, S.B., 1991. How Many Subjects does It Take to do a Regression Analysis. Multivariate Behavioral Research, 26(3): 499-510. https://doi.org/10.1207/s15327906mbr2603_7
      He, C., Tang, H. M., Shen, P. W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain-Softening Slope. Earth Science, 46(2): 697-707 (in Chinese with English abstract).
      Hu, J.Z., Zhang, J., Huang, H.W., et al., 2021. Value of Information Analysis of Site Investigation Program for Slope Design. Computers and Geotechnics, 131: 103938. https://doi.org/10.1016/j.compgeo.2020.103938
      Itasca Consulting Group, 2019. FLAC3D-Fast Lagrangian Analysis of Continua in Three-Dimensions, Ver. 7.0. Itasca, Minneapolis.
      Jiang, S.H., Li, D.Q., Cao, Z.J., et al., 2015. Multiple Response Surfaces Method for Probabilistic Analysis and Reliability Sensitivity Analysis of Slopes Considering Spatially Varying Soil Properties. Journal of Disaster Prevention and Mitigation Engineering, 35(5): 592-598 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXK201505007.htm
      Jiang, S.H., Liu, X., Yao, R.Z., et al., 2018. Optimization Design Approach for Layout Scheme of Slope Boreholes Based on Bayesian Updating and Value of Information Analysis. Chinese Journal of Geotechnical Engineering, 40(10): 1871-1879 (in Chinese with English abstract).
      Jiang, S.H., Papaioannou, I., Straub, D., 2018. Bayesian Updating of Slope Reliability in Spatially Variable Soils with In-Situ Measurements. Engineering Geology, 239: 310-320. https://doi.org/10.1016/j.enggeo.2018.03.021
      Jiang, S.H., Papaioannou, I., Straub, D., 2020. Optimization of Site-Exploration Programs for Slope-Reliability Assessment. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(1): 04020004. https://doi.org/10.1061/AJRUA6.0001042
      Liu, G.X., Xi, J.C., Dai, E.F., et al., 2014. Loss Risk Assessment of the Hazard-Affectted Body of Landslides in China. Journal of Natural Disasters, 23(2): 39-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH201402006.htm
      Miotto, R., Wang, F., Wang, S., et al., 2018. Deep Learning for Healthcare: Review, Opportunities and Challenges. Briefings in Bioinformatics, 19(6): 1236-1246. doi: 10.1093/bib/bbx044
      Papaioannou, I., Straub, D., 2017. Learning Soil Parameters and Updating Geotechnical Reliability Estimates Under Spatial Variability-Theory and Application to Shallow Foundations. Georisk, 11(1): 116-128. https://doi.org/10.1080/17499518.2016.1250280
      Phoon, K.K., Kulhawy, F.H., 1999. Characterization of Geotechnical Variability. Canadian Geotechnical Journal, 36(4): 612-624. https://doi.org/10.1139/t99-038
      Straub, D., 2014. Value of Information Analysis with Structural Reliability Methods. Structural Safety, 49: 75-85. https://doi.org/10.1016/j.strusafe.2013.08.006
      Tang, Z.H., Chai, B., Liu, Z.C., et al., 2013. Reliability Analysis of Stability of Fill Slope. Earth Science, 38(3): 616-624 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201303021.htm
      Tang, Z.H., Yu, X.L., Chai, B., et al., 2021. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 46(11): 4033-4042 (in Chinese with English abstract).
      Terbrugge, P.J., Wesseloo, J., Venter, J., et al., 2006. A Risk Consequence Approach to Open Pit Slope Design. Journal of the South African Institute of Mining and Metallurgy, 106(7): 503-511.
      Wang, W., Chen, G. Q., Zhu, J., et al., 2018. Slope Stability Calculated with Strength Reduction Method Considering Tensile and Shear Progressive Failure. Chinese Journal of Rock Mechanics and Engineering, 37(9): 2064-2074 (in Chinese with English abstract).
      Yang, R., Huang, J., Griffiths, D.V., et al., 2019. Optimal Geotechnical Site Investigations for Slope Design. Computers and Geotechnics, 114: 103111. https://doi.org/10.1016/j.compgeo.2019.103111
      Yang, R., Huang, J., Griffiths, D.V., et al., 2021. Optimal Geotechnical Site Investigations for Slope Reliability Assessment Considering Measurement Errors. Engineering Geology, 297: 106497. http://www.sciencedirect.com/science/article/pii/S0013795221005081
      Yoshida, I., Tasaki, Y., Otake, Y., et al., 2018. Optimal Sampling Placement in a Gaussian Random Field Based on Value of Information. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(3): 04018018. doi: 10.1061/AJRUA6.0000970
      Zhang, J., Chen, H.Z., Huang, H.W., et al., 2015. Efficient Response Surface Method for Practical Geotechnical Reliability Analysis. Computers and Geotechnics, 69: 496-505. doi: 10.1016/j.compgeo.2015.06.010
      Zhang, S., Tang, H.M., Liu, X., et al., 2018. Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity. Earth Science, 43(2): 622-634 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201802022.htm
      Zhang, W.G., Wang, Q., Chen, F.Y., 2021. Reliability Analysis of Slope and Random Response of Anti-Sliding Pile Considering Spatial Variability of Rock Mass Properties. Rock and Soil Mechanics, 42(11): 3157-3168 (in Chinese with English abstract).
      Zhao, J. X., Duan, L., Ma, J., et al., 2021. Importance Sampling for System Reliability Analysis of Soil Slopes Based on Shear Strength Reduction. Georisk, 15(4): 287-298. http://doc.paperpass.com/foreign/rgArti20207007479.html
      Zhao, T., Wang, Y., 2020. Determination of Efficient Sampling Locations in Geotechnical Site Characterization Using Information Entropy and Bayesian Compressive Sampling. Canadian Geotechnical Journal, 56(11): 1622-1637. https://doi.org/10.1139/cgj-2018-0286
      Zheng, Y.R., Zhao, S.Y., 2004. Application of Strength Reduction FEM in Soil and Rock Slope. Chinese Journal of Rock Mechanics and Engineering, 23(19): 3381-3388 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.19.029
      Zhou, Z., Li, D.Q., Xiao, T., et al., 2021. Response Surface Guided Adaptive Slope Reliability Analysis in Spatially Varying Soils. Computers and Geotechnics, 132: 103966. https://doi.org/10.1016/j.compgeo.2020.103966
      傅方煜, 郑小瑶, 吕庆, 等, 2014. 基于响应面法的边坡稳定二阶可靠度分析. 岩土力学, 35(12): 3460-3466. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412016.htm
      何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058
      蒋水华, 李典庆, 曹子君, 等, 2015. 考虑参数空间变异性的边坡可靠度及其敏感性分析多重响应面法. 防灾减灾工程学报, 35(5): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201505007.htm
      蒋水华, 刘贤, 尧睿智, 等, 2018. 基于贝叶斯更新和信息量分析的边坡钻孔布置方案优化设计方法. 岩土工程学报, 40(10): 1871-1879. doi: 10.11779/CJGE201810014
      刘光旭, 席建超, 戴尔阜, 等, 2014. 中国滑坡灾害承灾体损失风险定量评估. 自然灾害学报, 23(2): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201402006.htm
      唐朝晖, 柴波, 刘忠臣, 等, 2013. 填土边坡稳定性的可靠度分析. 地球科学, 38(3): 616-624. doi: 10.3799/dqkx.2013.062
      唐朝晖, 余小龙, 柴波, 等, 2021. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 46(11): 4033-4042. doi: 10.3799/dqkx.2019.960
      王伟, 陈国庆, 朱静, 等, 2018. 考虑张拉-剪切渐进破坏的边坡强度折减法研究. 岩石力学与工程学报, 37(9): 2064-2074. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809006.htm
      张抒, 唐辉明, 刘晓, 等, 2018. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征. 地球科学, 43(2): 622-634. doi: 10.3799/dqkx.2017.617
      仉文岗, 王琦, 陈福勇, 等, 2021. 考虑岩体空间变异性的边坡可靠度分析及抗滑桩随机响应研究. 岩土力学, 42(11): 3157-316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111024.htm
      郑颖人, 赵尚毅, 2004. 有限元强度折减法在土坡与岩坡中的应用. 岩石力学与工程学报, 23(19): 3381-3388. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200419037.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (792) PDF downloads(67) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return