• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Yang Ling, Wei Jing, 2023. Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm. Earth Science, 48(5): 2011-2023. doi: 10.3799/dqkx.2022.251
    Citation: Yang Ling, Wei Jing, 2023. Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm. Earth Science, 48(5): 2011-2023. doi: 10.3799/dqkx.2022.251

    Prediction of Rockburst Intensity Grade Based on SVM and Adaptive Boosting Algorithm

    doi: 10.3799/dqkx.2022.251
    • Received Date: 2022-06-20
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • Accurate prediction of rockburst intensity grade is of great significance for mitigating and eliminating rockburst hazards. Aiming at the problems of uncertain feature selection and low prediction accuracy of rockburst intensity grade prediction model, in this paper it proposes a rockburst grade prediction model based on SSA-SVM-AdaBoost algorithm with ReliefF-Pearson feature selection. The method combines the weight idea of ReliefF and the correlation principle of Pearson coefficient to select feature indexes, and SSA-SVM-AdaBoost algorithm is proposed by using the sparrow search algorithm (SSA) optimized support vector machine(SVM)classifier as the AdaBoost weak classifier to solve the multiclassification problem. First, 7 kinds of feature indicators are selected to form the original feature space by analyzing rockburst case data, then the 4⁃dimension advantage features are selected by ReliefF-Pearson method. The data is processed with random oversampling before input SSA-SVM-AdaBoost prediction model. The research results show that the feature selection method based on ReliefF-Pearson can effectively extract advantage feature indicators. Compared with SSA-SVM and AdaBoost based on single-layer decision tree, the prediction accuracy of SSA-SVM-AdaBoost model is improved by 12.5%, and 31.25% compared with SVM. It shows that SSA-SVM as a weak classifier is better than a single-layer decision tree in classification performance, and the AdaBoost enhancement algorithm integrating multiple single classifiers is better than a single classification model. Data oversampling process does not affect the accuracy of the model prediction set, but improves the prediction accuracy of the training set. It is proved that the proposed model can be effectively applied to rockburst intensity grade prediction, which provides a new perspective for this problem.

       

    • loading
    • Afraei, S., Shahriar, K., Madani, S. H., 2019. Developing Intelligent Classification Models for Rock Burst Prediction after Recognizing Significant Predictor Variables, Section 1: Literature Review and Data Preprocessing Procedure. Tunnelling and Underground Space Technology, 83: 324-353. https://doi.org/10.1016/j.tust.2018.09.022
      Dong, L. J., Li, X. B., Peng, K., 2013. Prediction of Rockburst Classification Using Random Forest. Transactions of Nonferrous Metals Society of China, 23(2): 472-477. doi: 10.1016/S1003-6326(13)62487-5
      Freund, Y., Schapire, R. E., 1997. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1): 119-139. https://doi.org/10.1006/jcss.1997.1504
      Gao, L., Liu, Z. K., Zhang, H. Y., 2021. Prediction of Rockburst Classification of Railway Tunnel Based on Hybrid PSO-RBF Neural Network. Journal of Railway Science and Engineering, 18(2): 450-458 (in Chinese with English abstract).
      Huang, J. Y., 2021. Research on Sparrow Search Algorithm Combining t Distribution and Tent Chaotic Mapping (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      Ji, X., Tang, Q. h., Chen, Y. l., et al., 2021. Multibeam Acoustic Seabed Classification Combining SVM and Adaptive Boosting Algorithm. Acta Geodaetica et Cartographica Sinica, 50(7): 972-981 (in Chinese with English abstract).
      Jia, Y. Q., 2018. Study on the Tendency Prediction and Control Techniques of Rock Burst in Laobi Mountain Tunnel of Chengdu to Kunming Railway (Dissertation). Xi'an University of Architecture and Technology, Xi'an, 44-45 (in Chinese with English abstract).
      Kong, L. G., Jiao, X. M., Chen, G. W., et al., 2020. Turnout Fault Diagnosis Based on Mallat Wavelet Decomposition and Improved GWO-SVM. Journal of Railway Science and Engineering, 17(5): 1070-1079 (in Chinese with English abstract).
      Li, M. L., Li, K. G., Qin, Q. C., et al., 2021. Discussion and Selection of Machine Learning Algorithm Model for Rockburst Intensity Grade Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S01): 2806-2816 (in Chinese with English abstract). doi: 10.1007/s10064-021-02460-7
      Lyu, X., Mu, X. D., Zhang, J., et al., 2021. Chaos Sparrow Search Optimization Algorithm. Journal of Beijing University of Aeronautics and Astronautics, 47(8): 1712-1720 (in Chinese with English abstract).
      Ortlepp, W. D., 2001. The Behaviour of Tunnels at Great Depth under Large Static and Dynamic Pressures. Tunnelling and Underground Space Technology, 16 (1): 41-48. https://doi.org/10.1016/s0886-7798(01)00029-3
      Pu, Y. Y., Apel, D. B., Liu, V., et al., 2019. Machine Learning Methods for Rockburst Prediction State of the Art Review. International Journal of Mining Science and Technology, 29(4): 565-570. doi: 10.1016/j.ijmst.2019.06.009
      Robnik-šikonja, M., Kononenko, I., 2003. Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning, 53(1/2): 23-69. https://doi.org/10.1023/A:1025667309714
      Schapire, R. E., Singer, Y., 2000. BoosTexter: A Boosting-Based System for Text Categorization. Machine Learning, 39(2-3): 135-168. https://doi.org/10.1023/A:1007649029923
      Tang, Z. L., Wang, X., Xu, Q. J., 2021. Rock Burst Prediction Based on Oversampling and Objective Weighting Method. Journal of Tsinghua University (Science and Technology), 61(6): 543-555 (in Chinese with English abstract).
      Tang, Z. L., Xu, Q. J., 2020. Rockburst Prediction Based on Nine Machine Learning Algorithms. Chinese Journal of Rock Mechanics and Engineering, 39(4): 773-781 (in Chinese with English abstract).
      Wang, C. H., Gao, G. Y., Yang, S. X., et al., 2019. Analysis and Prediction of Stress Fields of Sichuan-Tibet Railway Area Based on Contemporary Tectonic Stress Field Zoning in Western China. Chinese Journal of Rock Mechanics and Engineering, 38(11): 2242-2253 (in Chinese with English abstract).
      Wang, Y., Xu, Q., Chai, H. J., et al., 2013. Rock Burst Prediction in Deep Shaft Based on RBF-AR Model. Journal of Jilin University (Earth Science Edition), 43(6): 1943-1949, 1965 (in Chinese with English abstract). http://www.researchgate.net/publication/287477431_Rock_burst_prediction_in_deep_shaft_based_on_RBF-AR_model
      Wen, T., Zhang, X., Sun, J. S., et al., 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396 (in Chinese with English abstract).
      Wu, S. C., Zhang, C. X., Cheng, Z. Q., 2019. Prediction of Intensity Classification of Rockburst Based on PCA-PNN Principle. Journal of China Coal Society, 44(9): 2767-2776 (in Chinese with English abstract). http://www.researchgate.net/publication/336232623_The_prediction_of_intensity_classification_of_rockburst_based_on_PCA-PNN_principle
      Xue, J. K., Shen, B., 2020. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Systems Science & Control Engineering, 8(1): 22-34. https://doi.org/10.1080/21642583.2019.1708830
      Yan, X. H., Guo, C. B., Liu, Z. B., et al., 2022. Physical Simulation Experiment of Granite Rockburst in a Deep-Buried Tunnel in Kangding County, Sichuan Province, China. Earth Science, 47(6): 2081-2093 (in Chinese with English abstract).
      Yang, X. B., Pei, Y. Y., Cheng, H. M., et al., 2021. Prediction Method of Rockburst Intensity Grade Based on SOFM Neural Network Model. Chinese Journal of Rock Mechanics and Engineering, 40(S01): 2708-2715 (in Chinese with English abstract).
      Zhang, J. H., Chen, M., Zhao, S. K., et al., 2016. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition. Sensors (Basel, Switzerland), 16(10): 1558. https://doi.org/10.3390/s16101558
      Zhang, L. W., Zhang, D. Y., Qiu, D. H., 2010. Application of Extension Evaluation Method in Rockburst Prediction Based on Rough Set Theory. Journal of China Coal Society, 35(9): 1461-1465 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201009014.htm
      Zhang, X. N., Zhai, W. P., Hou, H. R., et al., 2021. ReliefF-Pearson Based Olfactory ElectroEncephaloGram Channel Selection. Journal of Electronics & Information Technology, 43(7): 2032-2037 (in Chinese with English abstract).
      Zhou, H., Liao, X., Chen, S. K., et al., 2022. Rockburst Risk Assessment of Deep Lying Tunnels Based on Combination Weight and Unascertained Measure Theory: A Case Study of Sangzhuling Tunnel on Sichuan-Tibet Traffic Corridor. Earth Science, 46(6): 2130-2148 (in Chinese with English abstract).
      Zhou, J., Li, X. B., Shi, X. Z., 2012. Long-Term Prediction Model of Rock Burst in Underground Openings Using Heuristic Algorithms and Support Vector Machines. Safety Science, 50(4): 629-644. https://doi.org/10.1016/j.ssci.2011.08.065
      Zhou, K. P., Lei, T., Hu, J. H., 2013. RS-TOPSIS Model of Rockburst Prediction in Deep Metal Mines and Its Application. Chinese Journal of Rock Mechanics and Engineering, 32(S2): 3705-3711 (in Chinese with English abstract). http://www.researchgate.net/publication/288138072_RS-TOPSIS_model_of_rockburst_prediction_in_deep_metal_mines_and_its_application
      Zhou, K. P., Lin, Y., Deng, H. W., et al., 2016. Prediction of Rock Burst Classification Using Cloud Model with Entropy Weight. Transactions of Nonferrous Metals Society of China, 26(7): 1995-2002. https://doi.org/10.1016/S1003-6326(16)64313-3
      Zhu, J., Zou, H., Rosset, S., et al., 2009. Multi-Class AdaBoost. Statistics and Its Interface, 2: 349-360. doi: 10.4310/SII.2009.v2.n3.a8
      高磊, 刘振奎, 张昊宇, 2021. 基于混合PSO-RBF神经网络的铁路隧道岩爆分级预测. 铁道科学与工程学报, 18(2): 450-458. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202102021.htm
      黄敬宇, 2021. 融合t分布和Tent混沌映射的麻雀搜索算法研究(硕士学位论文). 兰州: 兰州大学.
      纪雪, 唐秋华, 陈义兰, 等, 2021. 联合支持向量机和增强学习算法的多波束声学底质分类. 测绘学报, 50(7): 972-981. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202107012.htm
      贾月卿, 2018. 改建铁路成昆线老鼻山隧道岩爆倾向性预测分析与防治技术研究(硕士学位论文). 西安: 西安建筑科技大学, 44-45.
      孔令刚, 焦相萌, 陈光武, 等, 2020. 基于Mallat小波分解与改进GWO-SVM的道岔故障诊断. 铁道科学与工程学报, 17(5): 1070-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202005002.htm
      李明亮, 李克钢, 秦庆词, 等, 2021. 岩爆烈度等级预测的机器学习算法模型探讨及选择. 岩石力学与工程学报, 40(S01): 2806-2816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1023.htm
      吕鑫, 慕晓冬, 张钧, 等, 2021. 混沌麻雀搜索优化算法. 北京航空航天大学学报, 47(8): 1712-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202108024.htm
      汤志立, 王雪, 徐千军, 2021. 基于过采样和客观赋权法的岩爆预测. 清华大学学报(自然科学版), 61(6): 543-555. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202106008.htm
      汤志立, 徐千军, 2020. 基于9种机器学习算法的岩爆预测研究. 岩石力学与工程学报, 39(4): 773-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004011.htm
      王成虎, 高桂云, 杨树新, 等, 2019. 基于中国西部构造应力分区的川藏铁路沿线地应力的状态分析与预估. 岩石力学与工程学报, 38(11): 2242-2253. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911009.htm
      王羽, 许强, 柴贺军, 等, 2013. 工程岩爆灾害判别的RBF-AR耦合模型. 吉林大学学报(地球科学版), 43(6): 1943-1949, 1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306025.htm
      温韬, 张馨, 孙金山, 等, 2021. 基于峰前和峰后能量演化特征的岩石脆性评价. 地球科学, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342
      吴顺川, 张晨曦, 成子桥, 2019. 基于PCA-PNN原理的岩爆烈度分级预测方法. 煤炭学报, 44(9): 2767-2776. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201909017.htm
      严孝海, 郭长宝, 刘造保, 等, 2022. 四川康定某深埋隧道花岗岩岩爆物理模拟实验研究. 地球科学, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153
      杨小彬, 裴艳宇, 程虹铭, 等, 2021. 基于SOFM神经网络模型的岩爆烈度等级预测方法. 岩石力学与工程学报, 40(S01): 2708-2715. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1013.htm
      张乐文, 张德永, 邱道宏, 2010. 基于粗糙集的可拓评判在岩爆预测中的应用. 煤炭学报, 35(9): 1461-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201009014.htm
      张小内, 翟文鹏, 侯惠让, 等, 2021. 基于ReliefF-Pearson的嗅觉脑电通道选择. 电子与信息学报, 43(7): 2032-2037. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202107031.htm
      周航, 廖昕, 陈仕阔, 等, 2022. 基于组合赋权和未确知测度的深埋隧道岩爆危险性评价: 以川藏交通廊道桑珠岭隧道为例. 地球科学, 46(6): 2130-2148. doi: 10.3799/dqkx.2021.170
      周科平, 雷涛, 胡建华, 2013. 深部金属矿山RS-TOPSIS岩爆预测模型及其应用. 岩石力学与工程学报, 32(S2): 3705-3711. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2090.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(7)

      Article views (824) PDF downloads(73) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return