• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Xu Zhijun, Wang Zhengquan, Wang Yuntai, Tian Jiangtao, 2023. Reliability Analysis of Vertical Capacity for Necking Piles Assisted with Support Vector Machine. Earth Science, 48(5): 1948-1959. doi: 10.3799/dqkx.2022.255
    Citation: Xu Zhijun, Wang Zhengquan, Wang Yuntai, Tian Jiangtao, 2023. Reliability Analysis of Vertical Capacity for Necking Piles Assisted with Support Vector Machine. Earth Science, 48(5): 1948-1959. doi: 10.3799/dqkx.2022.255

    Reliability Analysis of Vertical Capacity for Necking Piles Assisted with Support Vector Machine

    doi: 10.3799/dqkx.2022.255
    • Received Date: 2022-06-21
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • Since commonly used first order reliability method (FORM) often yields inaccurate reliability index of pile bearing capacity, support vector machine (SVM) is combined with FORM to calculate the reliability index of bearing capacity of defective piles in this paper. Taking the reduced-diameter defective pile as an example, the vertical loading test of one complete pile and five reduced-diameter piles was carried out. The random weighting method is used to estimate the mean value of the bearing capacity reduction coefficient of the defective piles. The example shows that the shrinkage is filled with soil, which converts the lateral friction resistance of the pile here into the friction of the soil interface, and weakens the bearing capacity of the pile. The larger the shrinkage length, the larger the area filled by the soil at the shrinkage, and the smaller the pile bearing capacity reduction coefficient and reliability index. The closer the shrinkage position is to the top of the pile, the greater the degree to which the shrinkage limits the resistance of the side friction. The pile end resistance compensates for part of the loss of lateral friction resistance, so that when the shrinkage diameter is located in the shallow and middle parts of the pile body, the pile bearing capacity reduction coefficient and reliability index are roughly the same; when located deep, the bearing capacity loss is minimal and the reliability index is the largest.

       

    • loading
    • BenAmor, A., Moussa, R., 2019. Decomposition Formulae for Dirichlet Forms and Their Corollaries. Mediterranean Journal of Mathematics, 18(1): 1-20. https://doi.org/10.1007/s00009-020-01658-51660-5446/21/010001-20
      Chai, H, Y., Phoon, K.K., 2013. Detection of Shallow Anomalies in Pile Integrity Testing. International Journal of Geomechanics, 13(5): 672-677. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000233
      China Academy of Building Research, 2011. Code for Design Building Foundation (GB50007-2011). China Architecture & Building Press, Beijing (in Chinese).
      China Academy of Building Research, 2014. Technical Code of Building Foundation Piles (JGJ106-2014). China Architecture & Building Press, Beijing (in Chinese).
      Ezzein, F.M., Bathurst, R.J., 2011. A Transparent Sand for Geotechnical Laboratory Modeling. Geotechnical Testing Journal, 34(6): 590-601. https://doi.org/10.1520/GTJ103808
      He, C., Tang, H. M., Shen, P. W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain- Softening Slope. Earth Science, 46(2): 697-707 (in Chinese with English abstract).
      He, T.T., 2014. Slope Reliability Analysis Based on SVM (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).
      Hou, Z. K., Tang, M. X., Hu, H. S., et al., 2022. Physical Model Tests on Bearing Performance Drilling with Pre-Stressed Concrete Pipe Cased Pile Considering Hole Collapse. Chinese Journal of Geotechnical Engineering, 44(1): 153-162 (in Chinese with English abstract).
      Huang, F. M., Yin, K. L., Yang, B. B., et al., 2018. Step-Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model. Earth Science, 43(3): 887-898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201803020.htm
      Iai, S., 1989. Similitude for Shaking Table Tests on Soil-Structure-Fluid Model in 1g Gravitational Field. Soils and Foundations, 29(1): 105-118. https://doi.org/10.3208/sandf1972.29.105
      Iskander, M., Douglas, R., Kelley, S., et al., 2003. Drilled Shaft Defects: Detection, and Effects on Capacity in Varved Clay. Journal of Geotechnical and Geoenvironmental Engineering, 129(12): 1128-1137. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1128)
      Kapsa, V., Skála, L., 2011. Quantum Mechanics, Probabilities and Mathematical Statistics. Journal of Computational and Theoretical Nanoscience, 8(6): 998-1005. https://doi.org/10.1166/jctn.2011.1779
      Kong, G. Q., Cao, Z. H., Zhou, H., et al., 2016. Transparent Soil Model Test on Tapered Pile Driving Displacement Field Influenced by Enlarged Base. Journal of Basic Science and Engineering, 24(6): 1248-1255 (in Chinese with English abstract).
      Li, D.Q., Zhang, L.M., Tang, W.H., 2005. Reliability Evaluation of Cross-Hole Sonic Logging for Bored Pile Integrity. Journal of Geotechnical and Geoenvironmental Engineering, 131(9): 1130-1138. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1130)
      Li, Z.Y., 2017. Key Problems Investigation on Non- Destructive Integrity Detection of Piles with Elevated-Cap (Beam) (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).
      Liu, C., Tang, X.W., Wei, H.W., et al., 2020. Model Tests of Jacked-Pile Penetration into Sand Using Transparent Soil and Incremental Particle Image Velocimetry. KSCE Journal of Civil Engineering, 24(6): 1128-1145. https://doi.org/10.1007/s12205-020-1643-4
      Liu, C. L., Tang, M. X., Hu, H. S., et al., 2021. An Experimental Study of Vertical Bearing Capacity of DPC Piles Considering Sediment Effect at Pile Bottom. Rock and Soil Mechanics, 42(1): 177-185 (in Chinese with English abstract).
      Liu, G., Wang, K.H., Xiao, S., et al., 2016. An Analytical Solution for Excited Pile Vibrations with Variable Section Impedance in the Time Domain and Its Engineering Application. Computers & Geotechnics, 73(2): 170-178. https://doi.org/10.1016/j.compgeo.2015.12.008
      Liu, H. L., Zhong, H.Y., Gu, X., et al., 2021. Transparent Soil Model Testing on Ground Settlement Induced by Parallel Tunnels Excavation. Journal of Civil and Environmental Engineering, 43(1): 1-10. https://doi.org/10.11835/j.issn.2096-67172020.0821
      Luo, Q.X., Wang, W.P., 2010. Zhuangji Gongcheng Jiance Shouce 3th. China Communications Press, Beijing (in Chinese).
      Luo, S.X., 2004. Research and Engineering Application on Probability Limit States Design Method of Pile Foundation (Dissertation). Southwest Jiaotong University, Chengdu (in Chinese with English abstract).
      Massarsch, K.R., Weraell, C., 2013. Cumulative Lateral Soil Displacement Due to Pile Driving in Soft Clay. In: Geo-Congress, Sound Geotechnical Research to Practice, Geotechnical Special Publication (GSP230). Geo-Congress 2013, San Diego, 463-480. https://doi.org/10.1061/9780784412770.031
      Ministry of Housing and Urban-Rural Development of the People' s Republic of China, 2001. Unified Standard for Reliability Design of Building Structures (GB50068-2001). China Architecture & Building Press, Beijing, 7-10 (in Chinese).
      Poulos, H.G., 1997. Behaviour of Pile Groups with Defective Piles. In: Proceeding of 14th Soil Mechanics Foundation Engineering, Rotterdam. A.A. Balkema Publishers, London, 871-876.
      Poulos, H.G., 2005. Pile Behaviour-Consequences of Geological and Construction Imperfections. Journal of Geotechnical and Geoenvironmental Engineering, 131(5): 538-563. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(538)
      Samman, M., O'Neill, MW., 1997. The Reliability of Sonic Testing of Drilled Shafts. Concrete. Int. , 19(1): 49-54.
      Wang, C.H., Li, Q.H., Zhang, M.N., et al., 2014. Field Model Test Study of Vertical Bearing Behavior of some Kinds of Single Defect Piles. Rock and Soil Mechanics, 35(11): 3207-3213, 3230 (in Chinese with English abstract).
      Wang, K.H., Xiao, S., Wu, J.T., et al., 2018. Dynamic Characteristics of Defective Large Diameter Piles in Saturated Soil. Chinese Journal of Rock Mechanics and Engineering, 37(7): 1722-1730 (in Chinese with English abstract).
      Wang, N., Wang, K. H., 2013. Influence of Layering of Stratum under Pile Tip on Pile Longitudinal Stiffness. Chinese Journal of Rock Mechanics and Engineering, 32(5): 1042-1048 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.05.023
      Wu, J. T., Wang, K. H., Liu, X., et al., 2019. An Analytical Solution of Dynamic Responses of Multi-Layered Soil around Defect Piles and Its Application in Parallel Seismic Method. Chinese Journal of Rock Mechanics and Engineering, 38(1): 203-216 (in Chinese with English abstract).
      Xiao, Y., Yin, F., Liu, H., et al., 2017. Model Tests on Soil Movement during the Installation of Piles in Transparent Granular Soil. International Journal of Geomechanics, 17(4): 06016027. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000788
      Xu, Z. J., Han, X., Zheng, J. J., et al., 2020. Study on Reliability Optimization Design Method of Piles under Vertical Loads. Journal of Huazhong University of Science and Technology (Natural Science Edition), 48(5): 55-60 (in Chinese with English abstract).
      Xu, Z.J., Liu, J., Yuan, F., 2019. A Novel Measurement Method of Toe Debris Thickness for Bored Piles Based on One-Dimensional Wave Theory. Journal of Vibroengineering, 21(4): 1079-1091. https://doi.org/10.21595/jve.2019.20499
      Xu, Z.J., Liu, J., Zhang, J., et al., 2019a. A Device for Measuring the Thickness of Sediment at the Bottom of a Borehole Infused Pile Hole (Patent). Southwest Jiaotong University, Chengdu, ZL201820694463.6 (in Chinese).
      Xu, Z. J., Liu, J., Zhang, J., et al., 2019b. Development of Measurement Equipment of Toe Debris Thickness for Bored Piles. Journal of Huazhong University of Science and Technology (Natural Science Edition), 47(2): 19-23 (in Chinese).
      Xu, Z. J., Zheng, J. J., Bian, X. Y., et al., 2012. Probabilistic Analysis of Integrity Inspection and Dynamic Evaluation of Quality for Bored Piles. Chinese Journal of Geotechnical Engineering, 34(1): 151-157 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC201201017.htm
      Zhang, W.G., Zhong, H.Y., Xiang, Y.Z., et al., 2020. Visualization and Digitization of Model Tunnel Deformation via Transparent Soil Testing Technique. Underground Space, 7(4): 564-576. https://doi.org/10.1016/j.undsp.2020.05.004
      Zhao, H. S., 2005. An Analysis Method for the Location and Degree of Shallow Defects of Piles. China Civil Engineering Journal, 38(6): 83-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TMGC200506013.htm
      Zheng, J. J., Xu, Z. J., Liu, Y., et al., 2010. Reliability Analysis for Vertical Bearing Capacity of Piles Based on the Maximum Entropy Principle. Chinese Journal of Geotechnical Engineering, 32(11): 1643-1647 (in Chinese with English abstract).
      Zheng, Z.G., 1987. Random Weighting Method. Acta Mathematicae Applicatae Sinica, 10(2): 247-253 (in Chinese with English abstract).
      Zhou, D., Liu, H. L., Zhang, W. G., et al., 2019. Transparent Soil Model Test on the Displacement Field of Soil around Single Passive Pile. Rock and Soil Mechanics, 40(7): 2686-2694 (in Chinese with English abstract).
      中国建筑科学研究院, 2011. GB50007建筑地基基础设计规范. 北京: 中国建筑工业出版社.
      中国建筑科学研究院, 2014. JGJ106-2014建筑基桩检测技术规范. 北京: 中国建筑工业出版社.
      何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058
      何婷婷, 2014. 基于支持向量机的边坡可靠性分析(博士学位论文). 杭州: 浙江大学.
      侯振坤, 唐孟雄, 胡贺松, 等, 2022. 考虑塌孔的随钻跟管桩承载性能物理模拟试验研究. 岩土工程学报, 44(1): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202201015.htm
      黄发明, 殷坤龙, 杨背背, 等, 2018. 基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测. 地球科学, 43(3): 887-898. doi: 10.3799/dqkx.2018.909
      孔纲强, 曹兆虎, 周航, 等, 2016. 扩大头对楔形桩沉桩位移场影响的透明土模型试验. 应用基础与工程科学学报, 24(6): 1248-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201606015.htm
      李振亚, 2017. 带承台(梁)桩缺陷检测若干关键问题研究(博士学位论文). 杭州: 浙江大学.
      刘春林, 唐孟雄, 胡贺松, 等, 2021. 考虑桩底沉渣的随钻跟管桩竖向承载特性模型试验研究. 岩土力学, 42(1): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101020.htm
      罗骐先, 王五平, 2010. 桩基工程检测手册(第3版). 北京: 人民交通出版社.
      罗书学, 2004. 桩基概率极限状态法研究和工程应用(博士学位论文). 成都: 西南交通大学.
      中华人民共和国住房和城乡建设部, 2001. GB50068-2001建筑结构可靠度设计统一规范. 北京: 中国建筑工业出版社, 7-10.
      王成华, 李全辉, 张美娜, 等, 2014. 几种缺陷单桩竖向承载性状的现场模型试验研究. 岩土力学, 35(11): 3207-3213, 3230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411026.htm
      王奎华, 肖偲, 吴君涛, 等, 2018. 饱和土中大直径缺陷桩振动特性研究. 岩石力学与工程学报, 37(7): 1722-1730. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807016.htm
      王宁, 王奎华, 2013. 桩底土的成层性对桩体纵向刚度的影响. 岩石力学与工程学报, 32(5): 1042-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305023.htm
      吴君涛, 王奎华, 刘鑫, 等, 2019. 缺陷桩周围成层土振动响应解析解及其在旁孔透射波法中的应用. 岩石力学与工程学报, 38(1): 203-216. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201901017.htm
      徐志军, 韩星, 郑俊杰, 等, 2020. 竖向荷载下基桩可靠度优化设计方法研究. 华中科技大学学报(自然科学版), 48(5): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202005010.htm
      徐志军, 刘军, 张健, 等, 2019a. 一种钻孔灌注桩孔底沉渣厚度测量的装置(国家专利). 成都: 西南石油大学, ZL 201820694463.6.
      徐志军, 刘军, 张健, 等, 2019b. 灌注桩孔底沉渣厚度测量装置研制. 华中科技大学学报(自然科学版), 47(2): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201902004.htm
      徐志军, 郑俊杰, 边晓亚, 等, 2012. 基桩完整性检测的概率分析及质量动态评估. 岩土工程学报, 34(1): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201017.htm
      赵海生, 2005. 基桩浅部缺陷位置及程度的振动理论分析方法. 土木工程学报, 38(6): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200506013.htm
      郑俊杰, 徐志军, 刘勇, 等, 2010. 基于最大熵原理的基桩竖向承载力的可靠度分析. 岩土工程学报, 32(11): 1643-1647. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011003.htm
      郑忠国, 1987. 随即加权法. 应用数学学报, 10(2): 247-253.
      周东, 刘汉龙, 仉文岗, 等, 2019. 被动桩侧土体位移场的透明土模型试验. 岩土力学, 40(7): 2686-2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(1)

      Article views (538) PDF downloads(39) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return