• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 7
    Jul.  2023
    Turn off MathJax
    Article Contents
    Zeng Weite, Ding Wenlong, Zhang Jinchuan, Lin Tuo, Jiu Kai, 2023. Non-Tectonic Fracture Characteristics of Lower Paleozoic Shale in Southeast Chongqing and North Guizhou Area (South China) and Its Main Controlling Factors. Earth Science, 48(7): 2652-2664. doi: 10.3799/dqkx.2022.257
    Citation: Zeng Weite, Ding Wenlong, Zhang Jinchuan, Lin Tuo, Jiu Kai, 2023. Non-Tectonic Fracture Characteristics of Lower Paleozoic Shale in Southeast Chongqing and North Guizhou Area (South China) and Its Main Controlling Factors. Earth Science, 48(7): 2652-2664. doi: 10.3799/dqkx.2022.257

    Non-Tectonic Fracture Characteristics of Lower Paleozoic Shale in Southeast Chongqing and North Guizhou Area (South China) and Its Main Controlling Factors

    doi: 10.3799/dqkx.2022.257
    • Received Date: 2021-11-29
    • Publish Date: 2023-07-25
    • Natural non-tectonic fracture is an important reservoir space for shale gas. However, there are currently insufficient researches on the formation mechanism, control factors, and development characteristics of non-tectonic fractures. It characterizes natural non-tectonic fractures of Lower Silurian Longmaxi Shale and Lower Cambrian Niutitang Shale in study area. The non-tectonic micro-fractures of Lower Palaeozoic Shale were identified and their interior structures were characterized by analyzing SME images. The main controlling factors on the characteristics and distribution of non-tectonic fractures were analyzed by researching sedimentary environment, organic matter abundance and types, thermal evolution degree, hydrocarbon generation history, clay minerals, paleosalinity and diagenesis. The results show that natural non-tectonic fractures, which produced because of diagenetic shrinkage, dissolution and abnormal high pressure, are abundant in both Longmaxi Shale and Niutitang Shale. Natural non-tectonic fractures, of which the microstructure is in the irregular shape of silk-thread and curly sheet, cut shallowly in longitudinal direction, with width ranging from 10 nm to 50 nm, even more than 1 μm. The porosity and permeability of shale could be improved due to excellent extensibility and connectivity of non-tectonic fractures. The lower part of Niutitang Shale and Longmaxi Shale is deep-water shelf facies with numerous horizontal bedding, therefore, it is a favorable facies for the development of non-tectonic fractures. Undercompaction and hydrocarbon generation can produce large-scale overpressure fractures. In the early stage of burial, undercompaction was the main cause of formation overpressure. Hydrocarbon generation pressurization, that has a good corresponding relationship with thermal evolution, could release organic acids to promote the development of secondary dissolution fractures. While the destruction and adjustment of tectonic movement released the abnormal overpressure, the overpressure fractures shrunk or even closed. The lower Paleozoic shale was deposited in the water environment with medium paleosalinity, in addition, high clay content is conducive to the generation of diagenetic shrinkage fractures. Longmaxi Shale was in middle-late or late diagenesis stage, while the smectite transformed to illite gradually, the volume of diagenetic shrinkage fractures was close to the maximum. Niutitang Shale was in late diagenesis stage, the generation rate of shrinkage fractures became slow, moreover, the volume of diagenetic shrinkage fractures had approached or reached the maximum.

       

    • loading
    • Barker, C., 1990. Calculated Volume and Pressure Changes during the Thermal Cracking of Oil to Gas in Reservoirs. AAPG Bulletin, 74(8): 1254-1261. https://doi.org/10.1306/0c9b247f-1710-11d7-8645000102c1865d
      Browning, J., Tinker, S. W., Ikonnikova, S., et al., 2014. Study Develops Fayetteville Shale Reserves, Production Forecast. Oil and Gas Journal, 112(1): 64-73.
      Couch, E. L., 1971. Calculation of Paleosalinities from Boron and Clay Mineral Data. AAPG Bulletin, 55(10): 1829-1837. https://doi.org/10.1306/819a3dac-16c5-11d7-8645000102c1865d
      Ding, W. L., Wan, H., Zhang, Y. Q., et al., 2013a. Characteristics of the Middle Jurassic Marine Source Rocks and Prediction of Favorable Source Rock Kitchens in the Qiangtang Basin of Tibet. Journal of Asian Earth Sciences, 66: 63-72. https://doi.org/10.1016/j.jseaes.2012.12.025
      Ding, W. L., Zhu, D. W., Cai, J. J., et al., 2013b. Analysis of the Developmental Characteristics and Major Regulating Factors of Fractures in Marine-Continental Transitional Shale-Gas Reservoirs: A Case Study of the Carboniferous-Permian Strata in the Southeastern Ordos Basin, Central China. Marine and Petroleum Geology, 45: 121-133. https://doi.org/10.1016/j.marpetgeo.2013.04.022
      Ding, W.L., Xu, C.C., Jiu, K., et al., 2011. The Research Progress of Shale Fractures. Advances in Earth Science, 26(2): 135-144 (in Chinese with English abstract).
      Fisher, K., Warpinski, N., 2012. Hydraulic-Fracture-Height Growth: Real Data. SPE Production & Operations, 27(1): 8-19. https://doi.org/10.2118/145949-pa
      Gale, J. F. W., Lander, R. H., Reed, R. M., et al., 2010. Modeling Fracture Porosity Evolution in Dolostone. Journal of Structural Geology, 32(9): 1201-1211. https://doi.org/10.1016/j.jsg.2009.04.018
      Gale, J. F. W., Laubach, S. E., Olson, J. E., et al., 2014. Natural Fractures in Shale: A Review and New Observations. AAPG Bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151
      Guo, X.S., 2017. Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area. Earth Science, 42(7): 1069-1082 (in Chinese with English abstract).
      Guo, X., Zhong, J.H., Xu, X.L., et al., 2004. Development Characteristics and Genetic Mechanism of the Untectonic Fracture. Journal of the University of Petroleum, China, 28(2): 6-11 (in Chinese with English abstract).
      Jiu, K., Ding, W., Li, Y., et al., 2012. Structural Features in Northern Guizhou Area and Reservoir Fracture of Lower Cambrian Shale Gas. Natural Gas Geoscience, (4): 797-804 (in Chinese with English abstract).
      Kramar, U., 1997. Advances in Energy-Dispersive X-Ray Fluorescence. Journal of Geochemical Exploration, 58(1): 73-80. https://doi.org/10.1016/S0375-6742(96)00053-2
      Li, Y. F., Fan, T. L., Zhang, J. C., et al., 2015. Geochemical Changes in the Early Cambrian Interval of the Yangtze Platform, South China: Implications for Hydrothermal Influences and Paleocean Redox Conditions. Journal of Asian Earth Sciences, 109: 100-123. https://doi.org/10.1016/j.jseaes.2015.05.003
      Liu, Z.B., Gao, B., Zhang, Y.Y., et al., 2017. Types and Distribution of the Shale Sedimentary Facies of the Lower Cambrian in Upper Yangtze Area, South China. Petroleum Exploration and Development, 44(1): 21-31 (in Chinese with English abstract).
      Shi, Z.S., Qiu, Z., 2021. Main Bedding Types of Marine Fine-Grained Sediments and Their Significance for Oil and Gas Exploration and Development. Acta Sedimentologica Sinica, 39(1): 181-196 (in Chinese with English abstract).
      Sichuan Provincial Bureau of Geology and Mineral Resources, 1991. Regional Geology of Sichuan Province. Geological Publishing House, Beijing (in Chinese).
      Tian, H., Zeng, L.B., Xu, X., et al., 2020. Characteristics of Natural Fractures in Marine Shale in Fuling Area, Sichuan Basin, and Their Influence on Shale Gas. Oil & Gas Geology, 41(3): 474-483 (in Chinese with English abstract).
      Wang, R. Y., Ding, W. L., Wang, Z. et al., 2015. Progress of Geophysical Well Logging in Shale Gas Reservoir Evaluation. Progress in Geophysics, (1): 228-241 (in Chinese with English abstract).
      Wang, R. Y., Ding, W. L., Zhang, Y. Q., et al., 2016. Analysis of Developmental Characteristics and Dominant Factors of Fractures in Lower Cambrian Marine Shale Reservoirs: A Case Study of Niutitang Formation in Cen'gong Block, Southern China. Journal of Petroleum Science and Engineering, 138: 31-49. https://doi.org/10.1016/j.petrol.2015.12.004
      Wang, R.Y., Gong, D.J., Ding, W.L., et al., 2016. Brittleness Evaluation of the Lower Cambrian Niutitang Shale in the Upper Yangtze Region: A Case Study in the Cengong Block, Guizhou Province. Earth Science Frontiers, 23(1): 87-95 (in Chinese with English abstract).
      Wang, X. H., 2020. Fractures Characterization and Controlling Effect on Shale Gas of Lower Cambrian Niutitang Shale in Cen'gong Block, Northeastern Guizhou Province (Dissertation). China University of Geosciences, Beijing, 84-92 (in Chinese with English abstract).
      Wang, Y. H., 2018. Evolution of Formation Fluid Pressure in Longmaxi Formation, Pengshui Area, Southeast Chongqing (Dissertation). China University of Petroleum, Beijing, 36-55 (in Chinese with English abstract).
      Wei, Z.H., 2015. Late Fugitive Emission of Shale Gas from Wufeng-Longmaxi Formation in Sichuan Basin and Its Periphery. Oil & Gas Geology, 36(4): 659-665 (in Chinese with English abstract).
      Wilkins, S., Mount, V., Mahon, K., et al., 2014. Characterization and Development of Subsurface Fractures Observed in the Marcellus Formation, Appalachian Plateau, North-Central Pennsylvania. AAPG Bulletin, 98(11): 2301-2345. https://doi.org/10.1306/08191414024
      Wu, J., Chen, X.Z., Liu, W.P., et al., 2022. Fluid Activity and Pressure Evolution Process of Wufeng-Longmaxi Shales, Southern Sichuan Basin. Earth Science, 47(2): 518-531 (in Chinese with English abstract).
      Yuan, Y.S., Zhou, Y., Qiu, D.F., et al., 2016. Formation Mechanism and Characteristics of Non-Tectonic Fractures in Shales. Geoscience, 30(1): 155-162 (in Chinese with English abstract).
      Zeng, L.B., Lü, W.Y., Xu, X., et al., 2022. Development Characteristics, Formation Mechanism and Hydrocarbon Significance of Bedding Fractures in Typical Tight Sandstone and Shale. Acta Petrolei Sinica, 43(2): 180-191 (in Chinese with English abstract).
      Zeng, L. B., Lyu, W. Y., Li, J., et al., 2016. Natural Fractures and Their Influence on Shale Gas Enrichment in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 1-9. https://doi.org/10.1016/j.jngse.2015.11.048
      Zhang, J.C., Jin, Z.J., Yuan, M.S., 2004. Reservoiring Mechanism of Shale Gas and Its Distribution. Natural Gas Industry, 24(7): 15-18 (in Chinese with English abstract).
      Zhang, J.C., Yang, C., Chen, Q., et al., 2016. Deposition and Distribution of Potential Shales in China. Earth Science Frontiers, 23(1): 74-86 (in Chinese with English abstract).
      Zhao, X.Y., Chen, H.Q., 1988. Characteristics of the Distribution of Clay Minerals in Oil-Bearing Basins in China and Their Controlling Factors. Acta Petrolei Sinica, 9(3): 28-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB198803003.htm
      Zhao, X.Y., He, D.B., 2012. Clay Minerals and Shale Gas. Xinjiang Petroleum Geology, 33(6): 643-647 (in Chinese with English abstract).
      Zhao, Z.Y., Guo, Y.R., Gu, J.Y., et al., 2013. The Growth Patterns and Mechanisms of Mud Cracks at Different Diagenetic Stages and Its Geological Significance. Acta Sedimentologica Sinica, 31(1): 38-49 (in Chinese with English abstract).
      Zou, C.N., Zhao, Q., Cong, L.Z., et al., 2021. Development Progress, Potential and Prospect of Shale Gas in China. Natural Gas Industry, 41(1): 1-14 (in Chinese with English abstract).
      丁文龙, 许长春, 久凯, 等, 2011. 泥页岩裂缝研究进展. 地球科学进展, 26(2): 135-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201102003.htm
      郭旭升, 2017. 上扬子地区五峰组‒龙马溪组页岩层序地层及演化模式. 地球科学, 42(7): 1069-1082. doi: 10.3799/dqkx.2017.086
      郭璇, 钟建华, 徐小林, 等, 2004. 非构造裂缝的发育特征及成因机制. 石油大学学报(自然科学版), 28(2): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200402001.htm
      久凯, 丁文龙, 李玉喜, 等, 2012. 黔北地区构造特征与下寒武统页岩气储层裂缝研究. 天然气地球科学, (4): 797-804. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204027.htm
      刘忠宝, 高波, 张钰莹, 等, 2017. 上扬子地区下寒武统页岩沉积相类型及分布特征. 石油勘探与开发, 44(1): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701004.htm
      施振生, 邱振, 2021. 海相细粒沉积层理类型及其油气勘探开发意义. 沉积学报, 39(1): 181-196. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202101013.htm
      四川省地质矿产局, 1991. 四川省区域地质志. 北京: 地质出版社.
      田鹤, 曾联波, 徐翔, 等, 2020. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响. 石油与天然气地质, 41(3): 474-483. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003005.htm
      王濡岳, 丁文龙, 王哲, 等, 2015. 页岩气储层地球物理测井评价研究现状. 地球物理学进展, (1): 228-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201501034.htm
      王濡岳, 龚大建, 丁文龙, 等, 2016. 上扬子地区下寒武统牛蹄塘组页岩储层脆性评价: 以贵州岑巩区块为例. 地学前缘, 23(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601010.htm
      王兴华, 2020. 黔北岑巩区块下寒武统牛蹄塘组页岩储层裂缝表征与控气作用(博士学位论文). 北京: 中国地质大学.
      王瑀辉, 2018. 渝东南彭水地区龙马溪组地层压力演化(硕士学位论文). 北京: 中国石油大学.
      魏志红, 2015. 四川盆地及其周缘五峰组‒龙马溪组页岩气的晚期逸散. 石油与天然气地质, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htm
      吴娟, 陈学忠, 刘文平, 等, 2022. 川南五峰组‒龙马溪组页岩流体活动及压力演化过程. 地球科学, 47(2): 518-531. doi: 10.3799/dqkx.2021.049
      袁玉松, 周雁, 邱登峰, 等, 2016. 泥页岩非构造裂缝形成机制及特征. 现代地质, 30(1): 155-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201601016.htm
      曾联波, 吕文雅, 徐翔, 等, 2022. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义. 石油学报, 43(2): 180-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202202002.htm
      张金川, 金之钧, 袁明生, 2004. 页岩气成藏机理和分布. 天然气工业, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm
      张金川, 杨超, 陈前, 等, 2016. 中国潜质页岩形成和分布. 地学前缘, 23(1): 74-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601009.htm
      赵杏媛, 陈洪起, 1988. 我国含油盆地粘土矿物分布特征及控制因素. 石油学报, 9(3): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198803003.htm
      赵杏媛, 何东博, 2012. 黏土矿物与页岩气. 新疆石油地质, 33(6): 643-647. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201206004.htm
      赵振宇, 郭彦如, 顾家裕, 等, 2013. 不同成岩期泥质岩非构造裂缝发育规律、形成机理及其地质意义. 沉积学报, 31(1): 38-49. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201301006.htm
      邹才能, 赵群, 丛连铸, 等, 2021. 中国页岩气开发进展、潜力及前景. 天然气工业, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(1)

      Article views (572) PDF downloads(71) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return