• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Wang Tonghong, Wang Xufeng, Zhang Songlin, Tan Junlei, Zhang Yang, Ren Zhiguo, Bai Xuejie, 2024. Interannual Change Control Mechanism of Carbon Flux in Inland River Basins in Cold and Arid Regions. Earth Science, 49(5): 1907-1919. doi: 10.3799/dqkx.2022.269
    Citation: Wang Tonghong, Wang Xufeng, Zhang Songlin, Tan Junlei, Zhang Yang, Ren Zhiguo, Bai Xuejie, 2024. Interannual Change Control Mechanism of Carbon Flux in Inland River Basins in Cold and Arid Regions. Earth Science, 49(5): 1907-1919. doi: 10.3799/dqkx.2022.269

    Interannual Change Control Mechanism of Carbon Flux in Inland River Basins in Cold and Arid Regions

    doi: 10.3799/dqkx.2022.269
    • Received Date: 2022-07-04
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • In order to understand the interannual variation and control mechanism of carbon fluxes in inland river basins in cold and arid regions, an integrated watershed-scale flux observing network has been constructed for the main ecosystems in the Heihe River basin, including alpine ecosystems in the upper reaches and arid ecosystems in the lower reaches. The observed data analysis indicates that the annual net ecosystem productivity (NEP) and annual gross primary productivity (GPP) were the largest at the cropland site (maize, 729.81 g C/m2/a and 1 184.60 g C/m2/a) and the smallest at the Gobi desert site (94.18 g C/m2/a and 134.97 g C/m2/a) in the Heihe River basin. As to the annual ecosystem respiration (Reco), the wetland ecosystem was the largest (460.22 g C/m2/a), and the Gobi desert ecosystem was the smallest (41.18 g C/m2/a). The explaining capacity of the temperature to GPP, NEP and Reco inter-annual variability is higher in the alpine ecosystems than that in the arid ecosystems. In comparison, the explaining capacity of the soil moisture to GPP, NEP and Reco inter-annual variability is lower in the alpine ecosystems than that in the arid ecosystems. In the upper reaches, GPP, NEP and Reco are positively correlated with GPP, NEP, Reco among sites, but the opposite is true in the middle and down reaches. The shallow soil moisture is positively correlated with NEP, GPP and Reco among all sites in the Heihe River basin. In the upstream, shallow soil moisture is more closely correlated with NEP, GPP and Reco than deep soil moisture, but the deep soil moisture is more closely correlated with NEP, GPP and Reco than shallow soil moisture in the middle and lower reaches.

       

    • loading
    • Baldocchi, D., 2008. 'Breathing' of the Terrestrial Biosphere: Lessons Learned from a Global Network of Carbon Dioxide Flux Measurement Systems. Australian Journal of Botany, 56(1): 1. https://doi.org/10.1071/bt07151
      Baldocchi, D., Falge, E., Gu, L. H., et al., 2001. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 82(11): 2415-2434. https://doi.org/10.1175/1520-0477(2001)0822415: fantts>2.3.co;2 doi: 10.1175/1520-0477(2001)0822415:fantts>2.3.co;2
      Barros, V., Stocker, T. F., 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. Journal of Clinical Endocrinology & Metabolism, 18(6): 586-599.
      Cao, L., Shen, J. M., Nie, Z. L., et al., 2021. Stable Isotopic Characteristics of Precipitation and Moisture Recycling in Badain Jaran Desert. Earth Science, 46(8): 2973-2983 (in Chinese with English abstract).
      Cao, S. K., Cao, G. C., Feng, Q., et al., 2017. Alpine Wetland Ecosystem Carbon Sink and Its Controls at the Qinghai Lake. Environmental Earth Sciences, 76(5): 210. https://doi.org/10.1007/s12665-017-6529-5
      Chai, X., Li, Y. N., Duan, C., et al., 2018. CO2 Flux Dynamics and Its Limiting Factors in the Alpine Shrub-Meadow and Steppe-Meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 42(1): 6-19 (in Chinese with English abstract). doi: 10.17521/cjpe.2017.0266
      Cheng, G. D., Li, X., 2015. Integrated Research Methods in Watershed Science. Science China Earth Sciences, 58(7): 1159-1168. https://doi.org/10.1007/s11430-015-5074-x
      Guo, H., Li, S. E., Wong, F. L., et al., 2021. Drivers of Carbon Flux in Drip Irrigation Maize Fields in Northwest China. Carbon Balance and Management, 16(1): 12. https://doi.org/10.1186/s13021-021-00176-5
      Le Quéré, C., Raupach, M. R., Canadell, J. G., et al., 2009. Trends in the Sources and Sinks of Carbon Dioxide. Nature Geoscience, 2: 831-836. https://doi.org/10.1038/ngeo689
      Li, Y. N., Sun, X. M., Zhao, X. Q., et al., 2006. Seasonal Variations and Mechanism for Environmental Control of NEE of CO2 Concerning the Potentilla Fruticosa in Alpine Shrub Meadow of Qinghai-Tibet Plateau. Science in China (Series D: Earth Sciences), 49(2): 174-185. https://doi.org/10.1007/s11430-006-8174-9
      Liu, S. M., Che, T., Zhang, Y., et al., 2021. Comprehensive Observation Network of Qilian Mountains: Comprehensive Observation Network of Surface Processes in the Haihe River Basin (Eddy Correlator at Yakou Station-2020). National Tibetan Plateau Scientific Data Center, Beijing (in Chinese with English abstract).
      Liu, S. M., Xu, Z. W., Wang, W. Z., et al., 2011. A Comparison of Eddy-Covariance and Large Aperture Scintillometer Measurements with Respect to the Energy Balance Closure Problem. Hydrology and Earth System Sciences, 15(4): 1291-1306. https://doi.org/10.5194/hess-15-1291-201110.5194/hessd-7-8741-2010
      Lloyd, J., Taylor, J. A., 1994. On the Temperature Dependence of Soil Respiration. Functional Ecology, 315-323.
      Loescher, H. W., Law, B. E., Mahrt, L., et al., 2006. Uncertainties in, and Interpretation of, Carbon Flux Estimates Using the Eddy Covariance Technique. Journal of Geophysical Research: Atmospheres, 111(D21): D21S90. https://doi.org/10.1029/2005jd006932
      Ma, X. J., Wang, C. X., Dong, B. Y., et al., 2019. Carbon Emissions from Energy Consumption in China: Its Measurement and Driving Factors. Science of the Total Environment, 648: 1411-1420. https://doi.org/10.1016/j.scitotenv.2018.08.183
      Mao, N., Liu, G. M., Li, L. S., et al., 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract).
      Richardson, A. D., Braswell, B. H., Hollinger, D. Y., et al., 2006. Comparing Simple Respiration Models for Eddy Flux and Dynamic Chamber Data. Agricultural and Forest Meteorology, 141(2/3/4): 219-234. https://doi.org/10.1016/j.agrformet.2006.10.010
      Solomon, S., Pierrehumbert, R. T., Matthews, D., et al., 2013. Atmospheric Composition, Irreversible Climate Change, and Mitigation Policy. Climate Science for Serving Society. Springer, Dordrecht, 415-436. https://doi.org/10.1007/978-94-007-6692-1_15
      Thorsteinsson, T., Jóhannesson, T., Snorrason, Á., 2013. Glaciers and Ice Caps: Vulnerable Water Resources in a Warming Climate. Current Opinion in Environmental Sustainability, 5(6): 590-598. https://doi.org/10.1016/j.cosust.2013.11.003
      Wang, H. B., Li, X., Xiao, J. F., et al., 2019. Carbon Fluxes across Alpine, Oasis, and Desert Ecosystems in Northwestern China: The Importance of Water Availability. The Science of the Total Environment, 697: 133978. https://doi.org/10.1016/j.scitotenv.2019.133978
      Wang, J., Feng, L., Palmer, P. I., et al., 2020. Large Chinese Land Carbon Sink Estimated from Atmospheric Carbon Dioxide Data. Nature, 586: 720-723. https://doi.org/10.1038/s41586-020-2849-9
      Wang, J. F., Xu, C. D., 2017. Geodetector: Principle and Prospective. Acta Geographica Sinica, 72(1): 116-134 (in Chinese with English abstract).
      Wang, S. Y., Zhang, Y., Lü, S. H., et al., 2016. Biophysical Regulation of Carbon Fluxes over an Alpine Meadow Ecosystem in the Eastern Tibetan Plateau. International Journal of Biometeorology, 60(6): 801-812. https://doi.org/10.1007/s00484-015-1074-y
      Wang, X. F., Ma, M. G., Huang, G. H., et al., 2012. Vegetation Primary Production Estimation at Maize and Alpine Meadow over the Heihe River Basin, China. International Journal of Applied Earth Observation and Geoinformation, 17: 94-101. https://doi.org/10.1016/j.jag.2011.09.009
      Wang, Y. N., 2015. Remote Sensing Monitoring of Farmland Carbon Flux and Carbon Sequestration Capacity Based on Vorticity Correlation (Dissertation). Henan Polytechnic University, Jiaozuo (in Chinese with English abstract).
      Wei, D., Qi, Y. H., Ma, Y. M., et al., 2021. Plant Uptake of CO2 Outpaces Losses from Permafrost and Plant Respiration on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 118(33): e2015283118. https://doi.org/10.1073/pnas.2015283118
      Wutzler, T., Lucas-Moffat, A., Migliavacca, M., et al., 2018. Basic and Extensible Post-Processing of Eddy Covariance Flux Data with REddyProc. Biogeosciences, 15(16): 5015-5030. https://doi.org/10.5194/bg-15-5015-2018
      Xiao, J. F., Sun, G., Chen, J. Q., et al., 2013. Carbon Fluxes, Evapotranspiration, and Water Use Efficiency of Terrestrial Ecosystems in China. Agricultural and Forest Meteorology, 182/183: 76-90. https://doi.org/10.1016/j.agrformet.2013.08.007
      Xinhua News Agency, 2020. Xi Jinping Delivered an Important Speech at the General Debate of the 75th Session of the UN General Assembly (in Chinese).
      Yamamoto, S., Saigusa, N., Gamo, M., et al., 2005. Findings through the AsiaFlux Network and a View Toward the Future. Journal of Geographical Sciences, 15(2): 142-148. https://doi.org/10.1007/BF02872679
      Yang, P., Zhao, L. Q., Liang, X. R., et al., 2022. Response of Net Ecosystem CO2 Exchange to Precipitation Events in the Badain Jaran Desert. Environmental Science and Pollution Research, 29(24): 36486-36501. https://doi.org/10.1007/s11356-021-18229-0
      You, N. S., Meng, J. J., Zhu, L. K., 2018. Sensitivity and Resilience of Ecosystems to Climate Variability in the Semi-Arid to Hyper-Arid Areas of Northern China: A Case Study in the Heihe River Basin. Ecological Research, 33(1): 161-174. https://doi.org/10.1007/s11284-017-1543-3
      Yu, T., Zhang, Q., Sun, R., 2021. Spatial Representativeness of Gross Primary Productivity from Carbon Flux Sites in the Heihe River Basin, China. Remote Sensing, 13(24): 5016. https://doi.org/10.3390/rs13245016
      Zhang, Q., Sun, R., Jiang, G. Q., et al., 2016. Carbon and Energy Flux from a Phragmites Australis Wetland in Zhangye Oasis-Desert Area, China. Agricultural and Forest Meteorology, 230/231: 45-57. https://doi.org/10.1016/j.agrformet.2016.02.019
      Zhou, B. T., Qian, J., 2021. Changes of Weather and Climate Extremes in the IPCC AR6. Climate Change Research, 17(6): 713-718.
      Zhou, T. J., 2021. New Physical Science Behind Climate Change: What does IPCC AR6 Tell Us? Innovation (Cambridge (Mass)), 2(4): 100173. https://doi.org/10.1016/j.xinn.2021.100173
      曹乐, 申建梅, 聂振龙, 等, 2021. 巴丹吉林沙漠降水稳定同位素特征与水汽再循环. 地球科学, 46(8): 2973-2983. doi: 10.3799/dqkx.2020.273
      柴曦, 李英年, 段呈, 等, 2018. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子. 植物生态学报, 42(1): 6-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201801002.htm
      刘绍民, 车涛, 张阳, 等, 2021. 祁连山综合观测网: 黑河流域地表过程综合观测网(垭口站涡动相关仪-2020). 北京: 国家青藏高原科学数据中心.
      毛楠, 刘桂民, 李莉莎, 等, 2022. 祁连山多年冻土区甲烷通量与甲烷微生物群落组成的关系. 地球科学, 47(2): 556-567. doi: 10.3799/dqkx.2021.037
      王劲峰, 徐成东, 2017. 地理探测器: 原理与展望. 地理学报, 72(1): 116-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201905015.htm
      王亚楠, 2015. 基于涡度相关的农田碳通量及固碳能力遥感监测(硕士学位论文). 焦作: 河南理工大学.
      新华社, 2020. 习近平在第七十五届联合国大会一般性辩论上发表重要讲话. http://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527652.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (430) PDF downloads(44) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return