• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Hou Runing, Li Zhi, Chen Ningsheng, Tian Shufeng, Liu Enlong, Ni Huayong, 2023. Modeling of Debris Flow Susceptibility Assessment in Tianshan Based on Watershed Unit and Stacking Ensemble Algorithm. Earth Science, 48(5): 1892-1907. doi: 10.3799/dqkx.2022.271
    Citation: Hou Runing, Li Zhi, Chen Ningsheng, Tian Shufeng, Liu Enlong, Ni Huayong, 2023. Modeling of Debris Flow Susceptibility Assessment in Tianshan Based on Watershed Unit and Stacking Ensemble Algorithm. Earth Science, 48(5): 1892-1907. doi: 10.3799/dqkx.2022.271

    Modeling of Debris Flow Susceptibility Assessment in Tianshan Based on Watershed Unit and Stacking Ensemble Algorithm

    doi: 10.3799/dqkx.2022.271
    • Received Date: 2022-07-05
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • The Tianshan Mountain and its surrounding areas will become the deployment areas of national important strategic transportation, oil and gas resources pipelines, and urban settlement construction in the future. The risk prediction and assessment of debris flow disasters in the region will make the monitoring layout and prevention of major potential debris flow disaster points more targeted. The ensemble learning algorithm can avoid the difficulty of algorithm selection in disaster susceptibility assessment and significantly improve the modeling accuracy. However, its application in debris flow susceptibility assessment is still limited and its reliability needs to be tested. In this paper, the stacking ensemble algorithm was used to evaluate and predict the susceptibility of debris flow disasters in the Tianshan Mountain. Considering 14 characteristic variables such as drought degree and steepness index, the prediction performance of the stacking ensemble algorithm and the independent heterogeneous algorithm was compared. Finally, the control factors of debris flow disasters in the Tianshan area are discussed. The results show follows: (1) The areas with high debris flow disaster and extremely high susceptibility to debris flow in the Tianshan area account for 17.06% and 19.75%, respectively, and are concentrated on the northern slope of the North Tianshan and the southern slope of the South Tianshan. (2) The AUC value of the prediction rate curve of the stacked ensemble algorithm is 0.87, which is significantly higher than that of the independent machine learning algorithm (0.79-0.81) and has better prediction performance than the independent machine learning algorithm. (3) In addition to conventional topography and rainfall, which have significant control on the formation of debris flows in the Tianshan area, drought and uplift have important effects on the formation of debris flow in the Tianshan area. The results of this paper not only contribute to the risk management of debris flow disasters in the Tianshan area but also have implications for the assessment of debris flow susceptibility in arid mountainous areas.

       

    • loading
    • Altmann, A., Tolo, L. I., 2010. Permutation Importance. Bioinformatics, 26(10): 1340-1347. doi: 10.1093/bioinformatics/btq134
      Band, S. S., Janizadeh, S., Pal, S. C., et al., 2020. Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms. Remote Sensing, 12(3568): 3568. http://www.sciencedirect.com/science/article/pii/S0022169420304674
      Blais-Stevens, A., Behnia, P., Kremer, M., et al., 2012. Landslide Susceptibility Mapping of the Sea to Sky Transportation Corridor, British Columbia, Canada: Comparison of Two Methods. Bulletin of Engineering Geology and the Environment, 71(3): 447-466. doi: 10.1007/s10064-012-0421-z
      Blöthe, J. H., Korup, O., Schwanghart, W., 2015. Large Landslides Lie Low: Excess Topography in the Himalaya-Karakoram Ranges. Geology, 43(6): 523-526. doi: 10.1130/G36527.1
      Carrara, A., Crosta, G., Frattini, P., 2008. Comparing Models of Debris-Flow Susceptibility in the Alpine Environment. Geomorphology, 94(3/4): 353-378. http://www.onacademic.com/detail/journal_1000035389459010_7c7a.html
      Chen, N. S., Tian, S. F., Zhang, Y., et al., 2021. Soil Mass Domination in Debris-Flow Disasters and Strategy for Hazard Mitigation. Earth Science Frontiers, 28(4): 337-348 (in Chinese with English abstract).
      Chen, N. S., Zhang, Y., Tian, S. F., et al., 2020a. Effectiveness Analysis of the Prediction of Regional Debris Flow Susceptibility in Post-Earthquake and Drought Site. Journal of Mountain Science, 17(2): 329-339. doi: 10.1007/s11629-019-5684-4
      Chen, Y., Qin, S., Qiao, S., et al., 2020b. Spatial Predictions of Debris Flow Susceptibility Mapping Using Convolutional Neural Networks in Jilin Province, China. Water, 12(8): 2079. doi: 10.3390/w12082079
      Chen, X., Chen, H., You, Y., et al., 2015. Susceptibility Assessment of Debris Flows Using the Analytic Hierarchy Process Method—A Case Study in Subao River Valley, China. Journal of Rock Mechanics and Geotechnical Engineering, 7(4): 404-410. doi: 10.1016/j.jrmge.2015.04.003
      Chowdhuri, I., Pal, S. C., Chakrabortty, R., 2020. Flood Susceptibility Mapping by Ensemble Evidential Belief Function and Binomial Logistic Regression Model on River Basin of Eastern India. Advances in Space Research (the Official Journal of the Committee on Space Research (COSPAR)), 65(5): 1466-1489. doi: 10.1016/j.asr.2019.12.003
      Dash, R. K., Falae, P. O., Kanungo, D. P., 2022. Debris Flow Susceptibility Zonation Using Statistical Models in Parts of Northwest Indian Himalayas—Implementation, Validation, and Comparative Evaluation. Natural Hazards, 111(2): 2011-2058. doi: 10.1007/s11069-021-05128-3
      Dou, J., Yunus, A. P., Bui, D. T., et al., 2020. Improved Landslide Assessment Using Support Vector Machine with Bagging, Boosting, and Stacking Ensemble Machine Learning Framework in a Mountainous Watershed, Japan. Landslides, 17(3): 641-658. doi: 10.1007/s10346-019-01286-5
      Handwerger, A. L., Huang, M. H., Fielding, E. J., et al., 2019. A Shift from Drought to Extreme Rainfall Drives a Stable Landslide to Catastrophic Failure. Scientific Reports, 9(1): 1569. doi: 10.1038/s41598-018-38300-0
      He, Q., Wang, M., Liu, K., 2021. Rapidly Assessing Earthquake-Induced Landslide Susceptibility on a Global Scale Using Random Forest. Geomorphology, 391: 107889. doi: 10.1016/j.geomorph.2021.107889
      Healey, S. P., Cohen, W. B., Yang, Z., et al., 2017. Mapping Forest Change Using Stacked Generalization: An Ensemble Approach. Remote Sensing of Environment, 204: 717-728. http://www.fs.usda.gov/treesearch/pubs/download/56397.pdf
      Hu, G. S., Shang, Y. J., Zeng, Q. L., et al., 2017. The Emergency Scientific Investigation of Catastrophic Debris Flow in Yecheng County of Xinjiang on July 6th, 2016. Mountain Research, 35(1): 112-116 (in Chinese with English abstract).
      Hu, R. J., Ma, H., Wu, R. S., et al., 1991. An Outline of Debris Flow in Xinjiang. Arid Land Geography, 14(2): 32-40 (in Chinese with English abstract).
      Huang, F. M., Cao, Y., Fan, X. M., et al., 2021a. Effects of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S02): 3227-3240 (in Chinese with English abstract).
      Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021b. Uncertainties of Landslide Susceptibility Prediction Due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract).
      Huang, F. M., Pan, L. H., Yao, C., et al., 2021c. Landslide Susceptibility Prediction Modelling Based on Semi- Supervised Machine Learning. Journal of Zhejiang University (Engineering Science), 55(9): 1705-1713 (in Chinese with English abstract).
      Huang, F. M., Pan, L., Fan, X., et al., 2022. The Uncertainty of Landslide Susceptibility Prediction Modeling: Suitability of Linear Conditioning Factors. Bulletin of Engineering Geology and the Environment, 81(5): 182. doi: 10.1007/s10064-022-02672-5
      Huang, F. M., Wang, Y., Dong, Z. L., et al., 2019. Regional Landslide Susceptibility Mapping Based on Grey Relational Degree Model. Earth Science, 44(2): 664-676 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902027.htm
      Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract).
      Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YSLX201801016&dbcode=CJFD&year=2018&dflag=pdfdown
      Ilia, I., Tsangaratos, P., 2016. Applying Weight of Evidence Method and Sensitivity Analysis to Produce a Landslide Susceptibility Map. Landslides, 13(2): 379-397. doi: 10.1007/s10346-015-0576-3
      Larsen, I. J., Montgomery, D. R., 2012. Landslide Erosion Coupled to Tectonics and River Incision. Nature Geoscience, 5(7): 468-473. doi: 10.1038/ngeo1479
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0341816221001090
      Li, Y., Zhou, R. J., Zhao, G. H., et al., 2015. Uplift and Erosion Driven by Wenchuan Earthquake and Their Effects on Geomorphic Growth of Longmen Mountains: A Case Study of Hongchun Gully in Yingxiu, China. Journal of Chengdu University of Technology (Science & Technology Edition), 42(1): 5-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2015.01.02
      Nahayo, L., Kalisa, E., Maniragaba, A., et al., 2019. Comparison of Analytical Hierarchy Process and Certain Factor Models in Landslide Susceptibility Mapping in Rwanda. Modeling Earth Systems and Environment, 5(3): 885-895. doi: 10.1007/s40808-019-00575-1
      Ouyang, C. J., Wang, Z. W., An, H. C., et al., 2019. An Example of a Hazard and Risk Assessment for Debris Flows—A Case Study of Niwan Gully, Wudu, China. Engineering Geology, 263(20): 105351. http://d.wanfangdata.com.cn/periodical/31d890cab0227589e60d623a783ed8d0
      Rahman, M., Chen, N. S., Mahmud, G. I., et al., 2021. Flooding and Its Relationship with Land Cover Change, Population Growth, and Road Density. Geoscience Frontiers, 12(6): 16-35. http://www.sciencedirect.com/science/article/pii/S1674987121000888?utm_source=TrendMD&utm_medium=cpc
      Schrefler, B., Delage, P., 2013. Snow Avalanches. Environmental Geomechanics. Wiley, New York.
      Taylor, K. E., 2001. Summarizing Multiple Aspects of Model Performance in a Single Diagram. Journal of Geophysical Research Atmospheres, 106(D7): 7183-7192. doi: 10.1029/2000JD900719
      Welsh, A., Davies, T., 2011. Identification of Alluvial Fans Susceptible to Debris-Flow Hazards. Landslides, 8(2): 183-194. doi: 10.1007/s10346-010-0238-4
      Wolpert, D. H., 1992. Stacked Generalization. Neural Networks, 5(2): 241-259. doi: 10.1016/S0893-6080(05)80023-1
      Xu, W., Yu, W., Jing, S., et al., 2013. Debris Flow Susceptibility Assessment by GIS and Information Value Model in a Large-Scale Region, Sichuan Province (China). Natural Hazards, 65(3): 1379-1392. doi: 10.1007/s11069-012-0414-z
      Zhang, S. H., Wu, G., 2019. Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS. Earth Science, 44(9): 3115-3134 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909025.htm
      陈宁生, 田树峰, 张勇, 等, 2021. 泥石流灾害的物源控制与高性能减灾. 地学前缘, 28(4): 337-348. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104038.htm
      胡桂胜, 尚彦军, 曾庆利, 等, 2017. 新疆叶城"7.6"特大灾害性泥石流应急科学调查. 山地学报, 35(1): 112-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201701014.htm
      胡汝骥, 马虹, 吴荣生, 等, 1991. 新疆境内的泥石流. 干旱区地理, 14(2): 32-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL199102005.htm
      黄发明, 曹昱, 范宣梅, 等, 2021a. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报, 40(S02): 3227-3240. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2023.htm
      黄发明, 陈佳武, 唐志鹏, 等, 2021b. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
      黄发明, 潘李含, 姚池, 等, 2021c. 基于半监督机器学习的滑坡易发性预测建模. 浙江大学学报(工学版), 55(9): 1705-1713. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202109012.htm
      黄发明, 汪洋, 董志良, 等, 2019. 基于灰色关联度模型的区域滑坡敏感性评价. 地球科学, 44(2): 664-676. doi: 10.3799/dqkx.2018.175
      黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
      黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      李勇, 周荣军, 赵国华, 等, 2015. 汶川地震驱动的隆升、剥蚀作用与龙门山地貌生长: 以映秀红椿沟为例. 成都理工大学学报(自然科学版), 42(1): 5-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201501002.htm
      张书豪, 吴光, 2019. 随机森林与GIS的泥石流易发性及可靠性. 地球科学, 44(9): 3115-3134. doi: 10.3799/dqkx.2019.081
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(2)

      Article views (1097) PDF downloads(95) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return