Citation: | Yao Min, Li Xu, Yuan Jidong, Wang Yujie, Li Pengyu, 2023. Deep Learning Characterization Method of Rock Mass Conditions Based on TBM Rock Breaking Data. Earth Science, 48(5): 1908-1922. doi: 10.3799/dqkx.2022.281 |
Chen, C., Qi, F., 2019. Review on Development of Convolutional Neural Network and Its Application in Computer Vision. Computer Science, 46(3): 63-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JSJA201903008.htm
|
Chen, L., Lin, W. B., Chen, P., et al., 2021. Porosity Prediction from Well Logs Using Back Propagation Neural Network Optimized by Genetic Algorithm in One Heterogeneous Oil Reservoirs of Ordos Basin, China. Journal of Earth Science, 32(4): 828-838. https://doi.org/10.1007/s12583-020-1396-5
|
Chen, Z. Y., Zhang, Y. P., Li, J. B., et al., 2021. Diagnosing Tunnel Collapse Sections Based on TBM Tunneling Big Data and Deep Learning: A Case Study on the Yinsong Project, China. Tunnel and Underground Space Technology, 108: 103700. https://doi.org/10.1016/j.tust.2020.103700
|
Chmelina, K., Rabensteiner, K., Krusche, G., 2013. A Tunnel Information System for the Management and Utilization of Geo-Engineering Data in Urban Tunnel Projects. Geotechnical and Geological Engineering, 31(3): 845-859. https://doi.org/10.1007/s10706-012-9547-9
|
Gao, J. Y., Yang, X. S., Zhang, T. Z., et al., 2016. Robust Visual Tracking Method via Deep Learning. Chinese Journal of Computers, 39(7): 1419-1434 (in Chinese with English abstract). http://www.researchgate.net/publication/306126889_Robust_visual_tracking_method_via_deep_learning
|
Guo, D., Li, J., Jiang, S. H., et al., 2021. Intelligent Assistant Driving Method for Tunnel Boring Machine Based on Big Data. Acta Geotechnica, 17: 1019-1030. https://doi.org/10.1007/S11440-021-01327-1
|
Hao, H. Z., Gu, Q., Hu, X. M., 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091-3106 (in Chinese with English abstract).
|
Hong, K. R., Feng, H. H., 2021. Development and Thinking of Tunnels and Underground Engineering in China in Recent 2 Years (from 2019 to 2020). Tunnel Construction, 41(8): 1259-1280 (in Chinese with English abstract).
|
Hou, S. K., Liu, Y. R., Zhang, K., 2020. Prediction of TBM Tunnelling Parameters Based on IPSO-BP Hybrid Model. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1648-1657 (in Chinese with English abstract).
|
Jiang, Z., 2014. Experimental and Munerical Study on Rock Cutting Mechanism of TBM Cutters. Central South University, Changsha (in Chinese with English abstract).
|
Jing, L. J., Zhang, N., Yang, C., 2016. Development of TBM and Its Construction Technologies in China. Tunnel Construction, 36(3): 331-337 (in Chinese with English abstract). http://www.cqvip.com/QK/94024X/201603/668453835.html
|
Li, F. Y., Han, W. F., 2018. Building TBM Shield Project, Innovating Big Data Cloud Platform and Leading the Technological Development of the Industry. Construction Machinery & Maintenance, (2): 111-115 (in Chinese).
|
Liu, H., 2021. Analysis of Characteristics of TBM Tunneling Data for Yinsong Project. Beijing Jiaotong University, Beijing (in Chinese with English abstract).
|
Liu, Z. J., 2009. Cutterhead Design Methods of Rock Tunnel Boring Machine. Dalian University of Technology, Dalian (in Chinese with English abstract).
|
Lu, H. T., Zhang, Q. C., 2016. Applications of Deep Convolutional Neural Network in Computer Vision. Journal of Data Acquisition and Processing, 31(1): 1-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJCJ201601001.htm
|
Qian, Q. H., Li, C. F., Fu, D. M., 2002. The Present and Prospect of Application of Tunneler in China's Underground Engineering. Underground Space, 22(1): 1-11 (in Chinese with English abstract). http://www.cqvip.com/QK/95765X/2002001/6054069.html
|
Sun, W., Shi, M. L., Zhang, C., et al., 2018. Dynamic Load Prediction of Tunnel Boring Machine (TBM) Based on Heterogeneous In-Situ Data. Automation in Construction, 92(AUG. ): 23-34. https://doi.org/10.1016/j.autcon.2018.03.030
|
Wang, D. T., Chen, G. X., 2022. Seismic Wave Impedance Inversion Based on Temporal Convolutional Network. Earth Science, 47(4): 1492-1506 (in Chinese with English abstract).
|
Wang, S. J., Wang, Y. J., Li, X., et al., 2021. Big Data-Based Boring Indexes and Their Application during TBM Tunneling. Advances in Civil Engineering, (4): 1-18. https://doi.org/10.1155/2021/2621931
|
Wang, S. J., Wang, Y. J., Li, X., et al., 2022. Study of Standardized Pre-Processing Method of TBM Tunnelling Data. Modern Tunnelling Technology, 59(2): 38-44, 52 (in Chinese with English abstract).
|
Xu, J. A., Li, J. B., Jing, L. J., et al., 2020. Design and Practice of TBM Intelligent Driving System of Key Parameters. Tunnel Construction, 40(11): 1673-1681 (in Chinese with English abstract).
|
Yan, C. M., Wang, C., 2021. Development and Application of Convolutional Neural Network Model. Journal of Frontiers of Computer Science & Technology, 15(1): 27-46 (in Chinese with English abstract).
|
Yu, T. Z., Li, J. B., Jing, L. J., et al., 2018. Design and Practice of Cloud Computing Platform for TBM Operation Information. Modern Tunnelling Technology, 55(6): 33-41, 52 (in Chinese with English abstract). http://www.researchgate.net/publication/332867584_Design_and_Practice_of_Cloud_Computing_Platform_for_TBM_Operation_Information
|
Zhang, S., Gong, Y. H., Wang, J. J., 2019. The Development of Deep Convolution Neural Network and Its Applications on Computer Vision. Chinese Journal of Computers, 42(3): 453-482 (in Chinese with English abstract). http://ieeexplore.ieee.org/document/8913521/
|
Zhang, Z. M., Li, X. Y., Ji, J., 2021. TBM Excavation Parameter Prediction Model Based on LS-SVM Method. Journal of Hohai University (Natural Sciences), 49(4): 373-379 (in Chinese with English abstract).
|
Zhao, G. Z., Wang, Y. X., Li, Y., et al., 2020. Prediction of TBM Performance Based on Optimized BP Neural Network. Journal of Henan Polytechnic University (Natural Science), 39(5): 139-145 (in Chinese with English abstract). http://ieeexplore.ieee.org/document/9421856/
|
Zhou, H., Ban, S. C., Han, Y., 2009. Research and Application of TBM Optimal Tunneling Parameters. Water Resources Development & Management, 29(4): 86-88, 85 (in Chinese). http://www.nstl.gov.cn/paper_detail.html?id=0665a9d920c623d683c031ca6d1a76af
|
Zhu, M. Q., Zhu, H. H., Wang, X., et al., 2020. Study on CART-Based Ensemble Learning Algorithms for Predicting TBM Tunneling Parameters and Classing Surrounding Rockmasses. Chinese Journal of Rock Mechanics and Engineering, 39(9): 1860-1871 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0886779820305496
|
陈超, 齐峰, 2019. 卷积神经网络的发展及其在计算机视觉领域中的应用综述. 计算机科学, 46(3): 63-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201903008.htm
|
高君宇, 杨小汕, 张天柱, 等, 2016. 基于深度学习的鲁棒性视觉跟踪方法. 计算机学报, 39(7): 1419-1434. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201607010.htm
|
郝慧珍, 顾庆, 胡修棉, 2021. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360
|
洪开荣, 冯欢欢, 2021. 近2年我国隧道及地下工程发展与思考(2019—2020年). 隧道建设(中英文), 41(8): 1259-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202108001.htm
|
侯少康, 刘耀儒, 张凯, 2020. 基于IPSO-BP混合模型的TBM掘进参数预测. 岩石力学与工程学报, 39(8): 1648-1657. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008013.htm
|
蒋喆, 2014. TBM盘形滚刀破岩机理的试验与模拟研究(硕士学位论文). 长沙: 中南大学.
|
荆留杰, 张娜, 杨晨, 2016. TBM及其施工技术在中国的发展与趋势. 隧道建设, 36(3): 331-337. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201603018.htm
|
李凤远, 韩伟峰, 2018. 建设盾构TBM工程大数据云平台创新引领行业技术发展. 工程机械与维修, (2): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJW201802063.htm
|
刘欢, 2021. 引松工程TBM掘进数据特征分析(硕士学位论文). 北京: 北京交通大学.
|
刘志杰, 2009. 岩石隧道掘进机刀盘设计方法研究(博士学位论文). 大连: 大连理工大学.
|
卢宏涛, 张秦川, 2016. 深度卷积神经网络在计算机视觉中的应用研究综述. 数据采集与处理, 31(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201601001.htm
|
钱七虎, 李朝甫, 傅德明, 2002. 隧道掘进机在中国地下工程中应用现状及前景展望. 地下空间, 22(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200201000.htm
|
王德涛, 陈国雄, 2022. 基于时间卷积网络的地震波阻抗反演. 地球科学, 47(4): 1492-1506. doi: 10.3799/dqkx.2021.070
|
王双敬, 王玉杰, 李旭, 等, 2022. TBM掘进数据标准化预处理方法研究. 现代隧道技术, 59(2): 38-44, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202202005.htm
|
徐剑安, 李建斌, 荆留杰, 等, 2020. TBM关键参数智能掘进系统的设计与实践. 隧道建设(中英文), 40(11): 1673-1681. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202011018.htm
|
严春满, 王铖, 2021. 卷积神经网络模型发展及应用. 计算机科学与探索, 15(1): 27-46. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202101002.htm
|
于太彰, 李建斌, 荆留杰, 等, 2018. TBM施工信息云计算平台的设计与实践. 现代隧道技术, 55(6): 33-41, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201806006.htm
|
张顺, 龚怡宏, 王进军, 2019. 深度卷积神经网络的发展及其在计算机视觉领域的应用. 计算机学报, 42(3): 453-482. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201903001.htm
|
张哲铭, 李晓瑜, 姬建, 2021. 基于LS-SVM的TBM掘进参数预测模型. 河海大学学报(自然科学版), 49(4): 373-379. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202104012.htm
|
赵光祖, 王亚旭, 李尧, 等, 2020. 基于优化BP神经网络的TBM性能预测. 河南理工大学学报(自然科学版), 39(5): 139-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202005020.htm
|
周红, 班树春, 韩颖, 2009. TBM最佳掘进工作参数研究与应用. 水利建设与管理, 29(4): 86-88, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJS200904035.htm
|
朱梦琦, 朱合华, 王昕, 等, 2020. 基于集成CART算法的TBM掘进参数与围岩等级预测. 岩石力学与工程学报, 39(9): 1860-1871. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009012.htm
|