• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Yao Min, Li Xu, Yuan Jidong, Wang Yujie, Li Pengyu, 2023. Deep Learning Characterization Method of Rock Mass Conditions Based on TBM Rock Breaking Data. Earth Science, 48(5): 1908-1922. doi: 10.3799/dqkx.2022.281
    Citation: Yao Min, Li Xu, Yuan Jidong, Wang Yujie, Li Pengyu, 2023. Deep Learning Characterization Method of Rock Mass Conditions Based on TBM Rock Breaking Data. Earth Science, 48(5): 1908-1922. doi: 10.3799/dqkx.2022.281

    Deep Learning Characterization Method of Rock Mass Conditions Based on TBM Rock Breaking Data

    doi: 10.3799/dqkx.2022.281
    • Received Date: 2022-07-14
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • Surrounding rock perception based on TBM construction data is essential to ensuring the safety of TBM construction and improving its construction efficiency, in which the accuracy of TBM tunnelling parameter prediction is crucial to testing the effect of surrounding rock perception. Therefore, in this paper it takes Jilin Yin-Song's project TBM4 bid section as the research object, selects the characteristic parameters of the surrounding rock from the rock breaking data of the loading phase of the TBM as input feature X1, and selects two construction control parameters (the rotation speed and penetration rate) as input feature X2, and constructs a convolutional neural network machine learning model to predict the TBM tunnelling response parameters Y (cutterhead torque and total thrust). According to the different learning objects, the point prediction model that only learns the response behavior of the stable boring phase and the line prediction model that simultaneously learns the response behavior of the loading phase and the stable boring phase are constructed, respectively. The improved results show that the point prediction model cannot describe the influence of control parameters on tunnelling response parameters. Although the line prediction model can describe the influence of control parameters on tunnelling response parameters, the prediction value of driving response in the stable boring phase is low. Considering that the low predictive value of the line prediction model in the stable boring phase is because the number of behavior samples in the stable boring phase only accounts for 9% of the total number of samples, in this paper, a method of adjusting loss function is proposed to improve the weight of behavior samples in the stable boring phase, which significantly improves the prediction accuracy of the line prediction model. The results show that the behavior of the loading boring phase should be studied, and the weight of the behavior of the stable boring phase should be increased to obtain a high-precision prediction model of tunnelling response parameters. The model obtained in this paper can provide a basis for further surrounding rock perception and control parameter optimization.

       

    • loading
    • Chen, C., Qi, F., 2019. Review on Development of Convolutional Neural Network and Its Application in Computer Vision. Computer Science, 46(3): 63-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JSJA201903008.htm
      Chen, L., Lin, W. B., Chen, P., et al., 2021. Porosity Prediction from Well Logs Using Back Propagation Neural Network Optimized by Genetic Algorithm in One Heterogeneous Oil Reservoirs of Ordos Basin, China. Journal of Earth Science, 32(4): 828-838. https://doi.org/10.1007/s12583-020-1396-5
      Chen, Z. Y., Zhang, Y. P., Li, J. B., et al., 2021. Diagnosing Tunnel Collapse Sections Based on TBM Tunneling Big Data and Deep Learning: A Case Study on the Yinsong Project, China. Tunnel and Underground Space Technology, 108: 103700. https://doi.org/10.1016/j.tust.2020.103700
      Chmelina, K., Rabensteiner, K., Krusche, G., 2013. A Tunnel Information System for the Management and Utilization of Geo-Engineering Data in Urban Tunnel Projects. Geotechnical and Geological Engineering, 31(3): 845-859. https://doi.org/10.1007/s10706-012-9547-9
      Gao, J. Y., Yang, X. S., Zhang, T. Z., et al., 2016. Robust Visual Tracking Method via Deep Learning. Chinese Journal of Computers, 39(7): 1419-1434 (in Chinese with English abstract). http://www.researchgate.net/publication/306126889_Robust_visual_tracking_method_via_deep_learning
      Guo, D., Li, J., Jiang, S. H., et al., 2021. Intelligent Assistant Driving Method for Tunnel Boring Machine Based on Big Data. Acta Geotechnica, 17: 1019-1030. https://doi.org/10.1007/S11440-021-01327-1
      Hao, H. Z., Gu, Q., Hu, X. M., 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science, 46(9): 3091-3106 (in Chinese with English abstract).
      Hong, K. R., Feng, H. H., 2021. Development and Thinking of Tunnels and Underground Engineering in China in Recent 2 Years (from 2019 to 2020). Tunnel Construction, 41(8): 1259-1280 (in Chinese with English abstract).
      Hou, S. K., Liu, Y. R., Zhang, K., 2020. Prediction of TBM Tunnelling Parameters Based on IPSO-BP Hybrid Model. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1648-1657 (in Chinese with English abstract).
      Jiang, Z., 2014. Experimental and Munerical Study on Rock Cutting Mechanism of TBM Cutters. Central South University, Changsha (in Chinese with English abstract).
      Jing, L. J., Zhang, N., Yang, C., 2016. Development of TBM and Its Construction Technologies in China. Tunnel Construction, 36(3): 331-337 (in Chinese with English abstract). http://www.cqvip.com/QK/94024X/201603/668453835.html
      Li, F. Y., Han, W. F., 2018. Building TBM Shield Project, Innovating Big Data Cloud Platform and Leading the Technological Development of the Industry. Construction Machinery & Maintenance, (2): 111-115 (in Chinese).
      Liu, H., 2021. Analysis of Characteristics of TBM Tunneling Data for Yinsong Project. Beijing Jiaotong University, Beijing (in Chinese with English abstract).
      Liu, Z. J., 2009. Cutterhead Design Methods of Rock Tunnel Boring Machine. Dalian University of Technology, Dalian (in Chinese with English abstract).
      Lu, H. T., Zhang, Q. C., 2016. Applications of Deep Convolutional Neural Network in Computer Vision. Journal of Data Acquisition and Processing, 31(1): 1-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJCJ201601001.htm
      Qian, Q. H., Li, C. F., Fu, D. M., 2002. The Present and Prospect of Application of Tunneler in China's Underground Engineering. Underground Space, 22(1): 1-11 (in Chinese with English abstract). http://www.cqvip.com/QK/95765X/2002001/6054069.html
      Sun, W., Shi, M. L., Zhang, C., et al., 2018. Dynamic Load Prediction of Tunnel Boring Machine (TBM) Based on Heterogeneous In-Situ Data. Automation in Construction, 92(AUG. ): 23-34. https://doi.org/10.1016/j.autcon.2018.03.030
      Wang, D. T., Chen, G. X., 2022. Seismic Wave Impedance Inversion Based on Temporal Convolutional Network. Earth Science, 47(4): 1492-1506 (in Chinese with English abstract).
      Wang, S. J., Wang, Y. J., Li, X., et al., 2021. Big Data-Based Boring Indexes and Their Application during TBM Tunneling. Advances in Civil Engineering, (4): 1-18. https://doi.org/10.1155/2021/2621931
      Wang, S. J., Wang, Y. J., Li, X., et al., 2022. Study of Standardized Pre-Processing Method of TBM Tunnelling Data. Modern Tunnelling Technology, 59(2): 38-44, 52 (in Chinese with English abstract).
      Xu, J. A., Li, J. B., Jing, L. J., et al., 2020. Design and Practice of TBM Intelligent Driving System of Key Parameters. Tunnel Construction, 40(11): 1673-1681 (in Chinese with English abstract).
      Yan, C. M., Wang, C., 2021. Development and Application of Convolutional Neural Network Model. Journal of Frontiers of Computer Science & Technology, 15(1): 27-46 (in Chinese with English abstract).
      Yu, T. Z., Li, J. B., Jing, L. J., et al., 2018. Design and Practice of Cloud Computing Platform for TBM Operation Information. Modern Tunnelling Technology, 55(6): 33-41, 52 (in Chinese with English abstract). http://www.researchgate.net/publication/332867584_Design_and_Practice_of_Cloud_Computing_Platform_for_TBM_Operation_Information
      Zhang, S., Gong, Y. H., Wang, J. J., 2019. The Development of Deep Convolution Neural Network and Its Applications on Computer Vision. Chinese Journal of Computers, 42(3): 453-482 (in Chinese with English abstract). http://ieeexplore.ieee.org/document/8913521/
      Zhang, Z. M., Li, X. Y., Ji, J., 2021. TBM Excavation Parameter Prediction Model Based on LS-SVM Method. Journal of Hohai University (Natural Sciences), 49(4): 373-379 (in Chinese with English abstract).
      Zhao, G. Z., Wang, Y. X., Li, Y., et al., 2020. Prediction of TBM Performance Based on Optimized BP Neural Network. Journal of Henan Polytechnic University (Natural Science), 39(5): 139-145 (in Chinese with English abstract). http://ieeexplore.ieee.org/document/9421856/
      Zhou, H., Ban, S. C., Han, Y., 2009. Research and Application of TBM Optimal Tunneling Parameters. Water Resources Development & Management, 29(4): 86-88, 85 (in Chinese). http://www.nstl.gov.cn/paper_detail.html?id=0665a9d920c623d683c031ca6d1a76af
      Zhu, M. Q., Zhu, H. H., Wang, X., et al., 2020. Study on CART-Based Ensemble Learning Algorithms for Predicting TBM Tunneling Parameters and Classing Surrounding Rockmasses. Chinese Journal of Rock Mechanics and Engineering, 39(9): 1860-1871 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0886779820305496
      陈超, 齐峰, 2019. 卷积神经网络的发展及其在计算机视觉领域中的应用综述. 计算机科学, 46(3): 63-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201903008.htm
      高君宇, 杨小汕, 张天柱, 等, 2016. 基于深度学习的鲁棒性视觉跟踪方法. 计算机学报, 39(7): 1419-1434. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201607010.htm
      郝慧珍, 顾庆, 胡修棉, 2021. 基于机器学习的矿物智能识别方法研究进展与展望. 地球科学, 46(9): 3091-3106. doi: 10.3799/dqkx.2020.360
      洪开荣, 冯欢欢, 2021. 近2年我国隧道及地下工程发展与思考(2019—2020年). 隧道建设(中英文), 41(8): 1259-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202108001.htm
      侯少康, 刘耀儒, 张凯, 2020. 基于IPSO-BP混合模型的TBM掘进参数预测. 岩石力学与工程学报, 39(8): 1648-1657. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008013.htm
      蒋喆, 2014. TBM盘形滚刀破岩机理的试验与模拟研究(硕士学位论文). 长沙: 中南大学.
      荆留杰, 张娜, 杨晨, 2016. TBM及其施工技术在中国的发展与趋势. 隧道建设, 36(3): 331-337. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201603018.htm
      李凤远, 韩伟峰, 2018. 建设盾构TBM工程大数据云平台创新引领行业技术发展. 工程机械与维修, (2): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJW201802063.htm
      刘欢, 2021. 引松工程TBM掘进数据特征分析(硕士学位论文). 北京: 北京交通大学.
      刘志杰, 2009. 岩石隧道掘进机刀盘设计方法研究(博士学位论文). 大连: 大连理工大学.
      卢宏涛, 张秦川, 2016. 深度卷积神经网络在计算机视觉中的应用研究综述. 数据采集与处理, 31(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201601001.htm
      钱七虎, 李朝甫, 傅德明, 2002. 隧道掘进机在中国地下工程中应用现状及前景展望. 地下空间, 22(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200201000.htm
      王德涛, 陈国雄, 2022. 基于时间卷积网络的地震波阻抗反演. 地球科学, 47(4): 1492-1506. doi: 10.3799/dqkx.2021.070
      王双敬, 王玉杰, 李旭, 等, 2022. TBM掘进数据标准化预处理方法研究. 现代隧道技术, 59(2): 38-44, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202202005.htm
      徐剑安, 李建斌, 荆留杰, 等, 2020. TBM关键参数智能掘进系统的设计与实践. 隧道建设(中英文), 40(11): 1673-1681. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202011018.htm
      严春满, 王铖, 2021. 卷积神经网络模型发展及应用. 计算机科学与探索, 15(1): 27-46. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202101002.htm
      于太彰, 李建斌, 荆留杰, 等, 2018. TBM施工信息云计算平台的设计与实践. 现代隧道技术, 55(6): 33-41, 52. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201806006.htm
      张顺, 龚怡宏, 王进军, 2019. 深度卷积神经网络的发展及其在计算机视觉领域的应用. 计算机学报, 42(3): 453-482. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201903001.htm
      张哲铭, 李晓瑜, 姬建, 2021. 基于LS-SVM的TBM掘进参数预测模型. 河海大学学报(自然科学版), 49(4): 373-379. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202104012.htm
      赵光祖, 王亚旭, 李尧, 等, 2020. 基于优化BP神经网络的TBM性能预测. 河南理工大学学报(自然科学版), 39(5): 139-145. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202005020.htm
      周红, 班树春, 韩颖, 2009. TBM最佳掘进工作参数研究与应用. 水利建设与管理, 29(4): 86-88, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJS200904035.htm
      朱梦琦, 朱合华, 王昕, 等, 2020. 基于集成CART算法的TBM掘进参数与围岩等级预测. 岩石力学与工程学报, 39(9): 1860-1871. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202009012.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(9)

      Article views (1013) PDF downloads(65) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return