• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Guo Zizheng, Yang Yufei, He Jun, Huang Da, 2024. Landslide Displacement Prediction Based on a Deep Learning Model Considering the Attention Mechanism. Earth Science, 49(5): 1665-1678. doi: 10.3799/dqkx.2022.306
    Citation: Guo Zizheng, Yang Yufei, He Jun, Huang Da, 2024. Landslide Displacement Prediction Based on a Deep Learning Model Considering the Attention Mechanism. Earth Science, 49(5): 1665-1678. doi: 10.3799/dqkx.2022.306

    Landslide Displacement Prediction Based on a Deep Learning Model Considering the Attention Mechanism

    doi: 10.3799/dqkx.2022.306
    • Received Date: 2022-07-26
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • Accurate displacement prediction plays an important role in landslide early warning. However, the majority of the existing data-driven models focus on single-point modeling based on time series data which cannot consider the deformation correlation in the whole slope. To overcome this drawback, this study proposed a spatial-temporal attention (STA) mechanism-based deep learning model which combined the convolutional neural network (CNN) with the long short-term memory (LSTM) neural network. A convolutional block attention module (CBAM) combined with CNN was developed to extract the spatial deformation characteristics of the slope. A temporal attention module and LSTM model were used to learn the significant historical information from the input external conditions time series data. The model also allowed to output the tempo-spatial attention weights to reveal the tempo-spatial characteristics of landslide deformation. The Paotongwan landslide with step-like behavior displacement in the Three Gorges Reservoir Area (TGRA) of China was used to validate the model performance. The results show that, the root mean square error (RMSE) and the mean average percentage error (MAPE) of the STA-CNN-LSTM model decreased 9.28% and 13.88%, respectively, compared with grey wolf optimization optimized support vector machine (GWO-SVM). The attention weight results calculated by STA-CNN-LSTM demonstrate that rainfall had a larger impact on the deformation of the Paotongwan landslide at the beginning of the monitoring while the influence of reservoir water level decreased with ongoing of the monitoring.

       

    • loading
    • Chen, C. Y., Chen, T. C. C., Yu, W. H., et al., 2005. Rainfall Duration and Debris-Flow Initiated Studies for Real-Time Monitoring. Environmental Geology, 47(5): 715-724. https://doi.org/10.1007/s00254-004-1203-0
      Corsini, A., Mulas, M., 2017. Use of ROC Curves for Early Warning of Landslide Displacement Rates in Response to Precipitation (Piagneto Landslide, Northern Apennines, Italy). Landslides, 14(3): 1241-1252. https://doi.org/10.1007/s10346-016-0781-8
      Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20(3): 273-297. https://doi.org/10.1007/BF00994018
      Deng, C. J., Wang, K. W., Yuan, Q. S., et al., 2015. Stability of Reservoir Slope under Repetitive Variation of Reservoir Water Level. Journal of Yangtze River Scientific Research Institute, 32(4): 96-100 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-5485.2015.04.019
      Ding, Y. K., Zhu, Y. L., Feng, J., et al., 2020. Interpretable Spatio-Temporal Attention LSTM Model for Flood Forecasting. Neurocomputing, 403: 348-359. https://doi.org/10.1016/j.neucom.2020.04.110
      Guo, Z. Z., Chen, L. X., Gui, L., et al., 2020a. Landslide Displacement Prediction Based on Variational Mode Decomposition and WA-GWO-BP Model. Landslides, 17(3): 567-583. https://doi.org/10.1007/s10346-019-01314-4
      Guo, Z. Z., Chen, L. X., Yin, K. L., et al., 2020b. Quantitative Risk Assessment of Slow-Moving Landslides from the Viewpoint of Decision-Making: A Case Study of the Three Gorges Reservoir in China. Engineering Geology, 273: 105667. https://doi.org/10.1016/j.enggeo.2020.105667
      Hakim, W. L., Rezaie, F., Nur, A. S., et al., 2022. Convolutional Neural Network (CNN) with Metaheuristic Optimization Algorithms for Landslide Susceptibility Mapping in Icheon, South Korea. Journal of Environmental Management, 305: 114367. https://doi.org/10.1016/j.jenvman.2021.114367
      Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation, 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
      Huang, D., Gu, D. M., 2017. Influence of Filling-Drawdown Cycles of the Three Gorges Reservoir on Deformation and Failure Behaviors of Anaclinal Rock Slopes in the Wu Gorge. Geomorphology, 295: 489-506. https://doi.org/10.1016/j.geomorph.2017.07.028
      Huang, D., Luo, S. L., Zhong, Z., et al., 2020. Analysis and Modeling of the Combined Effects of Hydrological Factors on a Reservoir Bank Slope in the Three Gorges Reservoir Area, China. Engineering Geology, 279: 105858. https://doi.org/10.1016/j.enggeo.2020.105858
      Li, S. H., Wu, N., 2021. A New Grey Prediction Model and Its Application in Landslide Displacement Prediction. Chaos, Solitons & Fractals, 147: 110969. https://doi.org/10.1016/j.chaos.2021.110969
      Li, X. Z., Kong, J. M., 2014. Application of GA-SVM Method with Parameter Optimization for Landslide Development Prediction. Natural Hazards and Earth System Sciences, 14(3): 525-533. https://doi.org/10.5194/nhess-14-525-2014
      Li, Y. J., Xu, Q., He, Y. S., et al., 2017. An ARMA-(LASSO-ELM)-Copula Framework for Landslide Displacement Prediction and Threshold Computing of the Displacement of Step-Like Landslides. Chinese Journal of Rock Mechanics and Engineering, 36(S2): 4075-4084 (in Chinese with English abstract).
      Liu, Y. Q., Zhang, Q., Song, L. H., et al., 2019. Attention-Based Recurrent Neural Networks for Accurate Short-Term and Long-Term Dissolved Oxygen Prediction. Computers and Electronics in Agriculture, 165: 104964. https://doi.org/10.1016/j.compag.2019.104964
      Luo, W. Q., Ji, Y. L., Wang, C. Y., et al., 2016. Research on Seemingly Unrelated Regressions Model of Landslide Displacement Prediction of Multiple Monitoring Points. Chinese Journal of Rock Mechanics and Engineering, 35(S1): 3051-3056 (in Chinese with English abstract). http://www.researchgate.net/publication/303919174_Research_on_seemingly_unrelated_regressions_model_of_landslide_displacement_prediction_of_multiple_monitoring_points
      Ma, H. T., Zhang, Y. H., Yu, Z. X., 2021. Research on the Identification of Acceleration Starting Point in Inverse Velocity Method and the Prediction of Sliding Time. Chinese Journal of Rock Mechanics and Engineering, 40(2): 355-364 (in Chinese with English abstract).
      Ma, X. Y., Wang, L. M., Qi, K. L., et al., 2021. Remote Sensing Image Scene Classification Method Based on Multi-Scale Cyclic Attention Network. Earth Science, 46(10): 3740-3752 (in Chinese with English abstract).
      Ma, Z. J., Mei, G., Prezioso, E., et al., 2021. A Deep Learning Approach Using Graph Convolutional Networks for Slope Deformation Prediction Based on Time-Series Displacement Data. Neural Computing and Applications, 33(21): 14441-14457. https://doi.org/10.1007/s00521-021-06084-6
      Miao, F. S., Wu, Y. P., Xie, Y. H., et al., 2017. Research on Progressive Failure Process of Baishuihe Landslide Based on Monte Carlo Model. Stochastic Environmental Research and Risk Assessment, 31(7): 1683-1696. https://doi.org/10.1007/s00477-016-1224-8
      Mirjalili, S., Mirjalili, S. M., Lewis, A., 2014. Grey Wolf Optimizer. Advances in Engineering Software, 69: 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
      Ren, Q. B., Li, M. C., Li, H., et al., 2021. A Novel Deep Learning Prediction Model for Concrete Dam Displacements Using Interpretable Mixed Attention Mechanism. Advanced Engineering Informatics, 50: 101407. https://doi.org/10.1016/j.aei.2021.101407
      Shang, M., Liao, F., Ma, R., et al., 2021. Quantitative Correlation Analysis on Deformation of Baijiabao Landslide between Rainfall and Reservoir Water Level. Journal of Engineering Geology, 29(3): 742-750 (in Chinese with English abstract).
      Song, K., Chen, L. Y., Liu, Y. L., et al., 2022. Dynamic Mechanism of Rain Infiltration in Deep-Seated Landslide Reactivate Deformation. Earth Science, 47(10): 3665-3676 (in Chinese with English abstract).
      Song, K., Yan, E. C., Zhu, D. P., et al., 2011. Base on Permeability of Landslide and Reservoir Water Change to Research Variational Regularity of Landslide Stability. Rock and Soil Mechanics, 32(9): 2798-2802 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.09.039
      Su, X. J., Zhou, W. X., Li, C. J., et al., 2022. Interpretable Offshore Wind Power Output Forecasting Based on Long Short-Term Memory Neural Network with Dual-Stage Attention. Automation of Electric Power Systems, 46(7): 141-151 (in Chinese with English abstract).
      Wang, Z. W., Li, D. Y., 2005. Application of 3S Technology in Landslide Monitoring. Journal of Yangtze River Scientific Research Institute, 22(5): 33-36 (in Chinese with English abstract).
      Woo, S., Park, J., 2018. CBAM: Convolutional Block Attention Module. Proceedings of the European Conference on Computer Vision (ECCV), Munich, 3-19.
      Wu, Q., Zhou, C. B., Huang, F. M., et al., 2022. Optimization of the Landslide Identification Method Based on a Dual Attention Mechanism. Bulletin of Geological Science and Technology, 41(2): 246-253 (in Chinese with English abstract).
      Xia, M., Ren, G. M., Ma, X. L., 2013. Deformation and Mechanism of Landslide Influenced by the Effects of Reservoir Water and Rainfall, Three Gorges, China. Natural Hazards, 68(2): 467-482. https://doi.org/10.1007/s11069-013-0634-x
      Xu, C., Liu, B. G., Liu, K. Y., et al., 2011. Intelligent Analysis Model of Landslide Displacement Time Series Based on Coupling PSO-GPR. Rock and Soil Mechanics, 32(6): 1669-1675 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.06.013
      Xu, F., Fan, C. J., Xu, X. J., et al., 2018. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model. Journal of Shanghai Jiao Tong University, 52(10): 1388-1395, 1416 (in Chinese with English abstract).
      Xu, S. L., Niu, R. Q., 2018. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term Memory Neural Network in Three Gorges Area, China. Computers & Geosciences, 111: 87-96. https://doi.org/10.1016/j.cageo.2017.10.013
      Yin, Y. P., Huang, B. L., Wang, W. P., et al., 2016. Reservoir-Induced Landslides and Risk Control in Three Gorges Project on Yangtze River, China. Journal of Rock Mechanics and Geotechnical Engineering, 8(5): 577-595. https://doi.org/10.1016/j.jrmge.2016.08.001
      Yin, Y. P., Wang, H. D., Gao, Y. L., et al., 2010. Real-Time Monitoring and Early Warning of Landslides at Relocated Wushan Town, the Three Gorges Reservoir, China. Landslides, 7(3): 339-349. https://doi.org/10.1007/s10346-010-0220-1
      Zhang, K., Zhang, K., Bao, R., et al., 2021. Intelligent Prediction of Landslide Displacements Based on Optimized Empirical Mode Decomposition and K-Mean Clustering. Rock and Soil Mechanics, 42(1): 211-223 (in Chinese with English abstract).
      Zheng, J., 2006. Methods and Standards of Landslide Stability Evaluation. The Chinese Journal of Geological Hazard and Control, 17(3): 53-57 (in Chinese with English abstract).
      Zhou, C., Yin, K. L., Cao, Y., et al., 2018. Displacement Prediction of Step-Like Landslide by Applying a Novel Kernel Extreme Learning Machine Method. Landslides, 15(11): 2211-2225. https://doi.org/10.1007/s10346-018-1022-0
      邓成进, 王孔伟, 袁秋霜, 等, 2015. 库水长期升降作用下库岸边坡稳定性研究. 长江科学院院报, 32(4): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201504022.htm
      李骅锦, 许强, 何雨森, 等, 2017. "阶跃式" 滑坡位移预测及阈值分析的ARMA-(LASSO-ELM)-Copula模型. 岩石力学与工程学报, 36(S2): 4075-4084. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S2041.htm
      罗文强, 冀雅楠, 王淳越, 等, 2016. 多监测点滑坡变形预测的似乎不相关模型研究. 岩石力学与工程学报, 35(S1): 3051-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1052.htm
      马海涛, 张亦海, 于正兴, 2021. 滑坡速度倒数法预测模型加速开始点识别及临滑时间预测研究. 岩石力学与工程学报, 40(2): 355-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102011.htm
      马欣悦, 王梨名, 祁昆仑, 等, 2021. 基于多尺度循环注意力网络的遥感影像场景分类方法. 地球科学, 46(10): 3740-3752. doi: 10.3799/dqkx.2020.365
      尚敏, 廖芬, 马锐, 等, 2021. 白家包滑坡变形与库水位、降雨相关性定量化分析研究. 工程地质学报, 29(3): 742-750. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202103017.htm
      宋琨, 陈伦怡, 刘艺梁, 等, 2022. 降雨诱发深层老滑坡复活变形的动态作用机制. 地球科学, 47(10): 3665-3676. doi: 10.3799/dqkx.2022.184
      宋琨, 晏鄂川, 朱大鹏, 等, 2011. 基于滑体渗透性与库水变动的滑坡稳定性变化规律研究. 岩土力学, 32(9): 2798-2802. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201109043.htm
      苏向敬, 周汶鑫, 李超杰, 等, 2022. 基于双重注意力LSTM神经网络的可解释海上风电出力预测. 电力系统自动化, 46(7): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT202207016.htm
      王志旺, 李端有, 2005.3S技术在滑坡监测中的应用. 长江科学院院报, 22(5): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200505010.htm
      吴琪, 周创兵, 黄发明, 等, 2022. 基于双重注意力机制的滑坡识别方法优化. 地质科技通报, 41(2): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202025.htm
      徐冲, 刘保国, 刘开云, 等, 2011. 基于粒子群-高斯过程回归耦合算法的滑坡位移时序分析预测智能模型. 岩土力学, 32(6): 1669-1675.
      徐峰, 范春菊, 徐勋建, 等, 2018. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测. 上海交通大学学报, 52(10): 1388-1395, 1416. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201810031.htm
      张凯, 张科, 保瑞, 等, 2021. 基于优化经验模态分解和聚类分析的滑坡位移智能预测研究. 岩土力学, 42(1): 211-223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101024.htm
      郑静, 2006. 滑坡稳定性评价的方法及标准. 中国地质灾害与防治学报, 17(3): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200603014.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(1)

      Article views (680) PDF downloads(77) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return