• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Hu Jinjun, Ding Yitian, Zhang Hui, Jin Chaoyue, Tang Chao, 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
    Citation: Hu Jinjun, Ding Yitian, Zhang Hui, Jin Chaoyue, Tang Chao, 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338

    A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network

    doi: 10.3799/dqkx.2022.338
    • Received Date: 2022-08-19
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • Real-time intensity prediction can estimate the maximum possible impact of an earthquake based on P-wave before the arrival of destructive seismic waves. Earthquake early warning targets can take measures to reduce the potential damage. Peak P-wave displacement amplitude is a parameter that effectively estimates the peak ground motion, however, it is difficult to fully characterize the information in ground motion by a single or multiple parameters. Meanwhile, the calculation of the parameter requires the determination of the time window size, and continuous prediction cannot be achieved. To solve the above problems, a prediction model based on long short-term memory network is proposed in this paper. The model is constructed based on K-NET data from 2010‒2021, and the MJMA 7.3 earthquake event in March 2022 is selected as a case to validate the model. The results show that the intensity can be predicted at each time step of the record after the P-wave arrival, and the accuracy in the test set is 96.47% at 3 seconds after P-wave arrival. The LSTM model proposed in this paper improves the accuracy and continuity of intensity prediction and can provide a scientific basis for earthquake early warning and emergency response.

       

    • loading
    • Carranza, M., Buforn, E., Colombelli, S., et al., 2013. Earthquake Early Warning for Southern Iberia: A P Wave Threshold‐Based Approach. Geophysical Research Letters, 40: 4588-4593. https://doi.org/10.1002/grl.50903
      Chen, Y. L., Jin, X., 2016. A Continuous Real⁃Time Method for Seismic Intensity Prediction. Earthquake Engineering and Engineering Dynamics, 36(6): 22-29 (in Chinese with English abstract).
      Chu, D. P., Wan, B., Li, H., et al., 2021. Geological Entity Recognition Based on ELMO⁃C0NN⁃BiLSTM⁃CRF Model. Earth Science, 46(8): 3039-3048 (in Chinese with English abstract). doi: 10.12090/j.issn.1006-6616.2021.27.03.035
      Deng, L., Yu, D., 2014. Deep Learning: Methods and Applications. Foundations and Trends in Signal Processing, 7: 197-387. https://doi.org/10.1561/2000000039
      Festa, G., Zollo, A., Lancieri, M., 2008. Earthquake Magnitude Estimation from Early Radiated Energy. Geophysical Research Letters, 35(22): L22307. https://doi.org/10.1029/2008GL035576
      Graves, A., Fernández, S., Gomez, F., et al., 2006. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks. In: Proceedings of the 23rd International Conference on Machine Learning. Association for Computing Machinery, New York, 369-376. https://doi.org/10.1145/1143844.1143891
      Hochreiter, S., Schmidhuber, J., 1997. Long Short⁃Term Memory. Neural Computation, 9: 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
      Hoshiba, M., Kamigaichi, O., Saito, M., et al., 2008. Earthquake Early Warning Starts Nationwide in Japan. EOS, Transactions American Geophysical Union, 89: 73-74. https://doi.org/10.1029/2008EO080001
      Kamigaichi, O., Saito, M., Doi, K., et al., 2009. Earthquake Early Warning in Japan: Warning the General Public and Future Prospects. Seismological Research Letters, 80: 717. https://doi.org/10.1785/gssrl.80.5.717
      Kanamori, H., 2005. Real⁃Time Seismology and Earthquake Damage Mitigation. Annu. Rev. Earth Planet. Sci. , 33: 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
      Kingma, D. P., Ba, J., 2014. ADAM: A Method for Stochastic Optimization. https://doi.org/10.48550/arXiv.1412.6980
      Kunugi, T., Aoi, S., Nakamura, H., et al., 2013. An Improved Approximating Filter for Real⁃Time Calculation of Seismic Intensity. Zisin, 2: 223-230. https://doi.org/10.4294/zisin.65.223
      Liu, R. S., Xiong, M. P., Ma, Q., et al., 2021. Vulnerability Study for High Voltage Electrical Equipment in Substations Based on Instrumental Seismic Intensity. Journal of Natural Disasters, 30(2): 14-23 (in Chinese with English abstract).
      Nazeri, S., Shomali, Z. H., Colombelli, S., et al., 2017. Magnitude Estimation Based on Integrated Amplitude and Frequency Content of the Initial P Wave in Earthquake Early Warning Applied to Tehran, Iran. Bulletin of the Seismological Society of America, 107: 1432-1438. https://doi.org/10.1007/978⁃3⁃642⁃55903⁃7_92
      Otake, R., Kurima, J., Goto, H., et al., 2020. Deep Learning Model for Spatial Interpolation of Real‐Time Seismic Intensity. Seismological Research Letters, 91: 3433-3443. https://doi.org/10.1785/0220200006
      Reimers, N., Gurevych, I., 2017. Optimal Hyperparameters for Deep LSTM⁃Networks for Sequence Labeling Tasks. Geophysical Research Letters, 44(4): 1724-1731. https://doi.org/10.1002/2016GL071672
      Sheen, D. H., Park, J. H., Chi, H. C., et al., 2017. The First Stage of an Earthquake Early Warning System in South Korea. Seismological Research Letters, 88: 1491-1498. https://doi.org/10.1785/0220170062
      Sherstinsky, A., 2020. Fundamentals of Recurrent Neural Network (RNN) and Long Short⁃Term Memory (LSTM) Network. Physica D: Nonlinear Phenomena, 404: 132306. https://doi.org/10.1016/j.physd.2019.132306
      Srivastava, N., Hinton, G., Krizhevsky, A., et al., 2014. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15: 1929-1958. http://pdfs.semanticscholar.org/6c8b/30f63f265c32e26d999aa1fef5286b8308ad.pdf
      Suárez, G., Espinosa Aranda, J. M., Cuéllar, A., et al., 2018. A Dedicated Seismic Early Warning Network: The Mexican Seismic Alert System (SASMEX). Seismological Research Letters, 89: 382-391. https://doi.org/10.1785/0220170184
      Sun, D. Z., Zhang, R. P., Sun, B. T., 2018. Discussion on the Application of Instrumental Intensity for Seismic Intensity Assessment. Building Structure, 48(S2): 279-283 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JCJG2018S2057.htm
      Wang, S., Jiang, J., 2015. Learning Natural Language Inference with LSTM. In: Proceedings of the Human Language Technologies: The 2016 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics. Association for Computational Linguistics, Stroudsburg. https://doi.org/10.48550/arXiv.1512.08849
      Wang, Y., Li, X., Li, L., et al., 2022. New Magnitude Proxy for Earthquake Early Warning Based on Initial Time Series and Frequency. Seismological Research Letters, 93: 216-225. https://doi.org/10.1785/0220210106
      Wang, Z., Zhao, B., 2018. Method of Accurate⁃Fast Magnitude Estimation for Earthquake Early Warning: Trial and Application for the 2008 Wenchuan Earthquake. Soil Dynamics and Earthquake Engineering, 109: 227-234. https://doi.org/10.1016/j.soildyn.2018.03.006
      Wu, Y., Kanamori, H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95: 1181-1185. https://doi.org/10.1785/0120040193
      Wu, Y. M., Zhao, L., 2006. Magnitude Estimation Using the First Three Seconds P‐Wave Amplitude in Earthquake Early Warning. Geophysical Research Letters, 33(16): L16312. https://doi.org/10.1029/2006GL026871
      Xie, Y., Ebad Sichani, M., Padgett, J. E., et al., 2020. The Promise of Implementing Machine Learning in Earthquake Engineering: A State⁃of⁃the⁃Art Review. Earthquake Spectra, 36: 1769-1801. https://doi.org/10.1177/8755293020919419
      Xu, Y., Lu, X., Cetiner, B., et al., 2021. Real‐Time Regional Seismic Damage Assessment Framework Based on Long Short‐Term Memory Neural Network. Computer‐Aided Civil and Infrastructure Engineering, 36: 504-521. https://doi.org/10.1080/13632469.2020.1826371
      Yamamoto, S., Rydelek, P., Horiuchi, S., et al., 2008. On the Estimation of Seismic Intensity in Earthquake Early Warning Systems. Geophysical Research Letters, 35(7): L07302. https://doi.org/10.1029/2007GL033034
      Yu, Y., Si, X., Hu, C., et al., 2019. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 31: 1235-1270. https://doi.org/10.1162/neco_a_01199
      Zhang, W., Li, H., Li, Y., et al., 2021. Application of Deep Learning Algorithms in Geotechnical Engineering: A Short Critical Review. Artificial Intelligence Review, 54: 5633-5673. https://doi.org/10.1007/s10462⁃021⁃09967⁃1
      Zhang, W., Phoon, K., 2022. Editorial for Advances and Applications of Deep Learning and Soft Computing in Geotechnical Underground Engineering. Elsevier, 14: 671-673. https://doi.org/10.1016/j.jrmge.2022.01.001
      Zhao, Z., Zheng, P., Xu, S., et al., 2019. Object Detection with Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems, 30: 3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865
      Zhu, J., Li, S., Song, J., et al., 2021. Magnitude Estimation for Earthquake Early Warning Using a Deep Convolutional Neural Network. Frontiers in Earth Science, 9: 341. https://doi.org/10.3389/feart.2021.653226
      Zollo, A., Amoroso, O., Lancieri, M., et al., 2010. A Threshold⁃Based Earthquake Early Warning Using Dense Accelerometer Networks. Geophysical Journal International, 183: 963-974. https://doi.org/10.1111/j.1365⁃246X.2010.04765.x
      Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract).
      陈以伦, 金星, 2016. 一种持续实时预测仪器地震烈度的方法. 地震工程与工程振动, 36(6): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201606003.htm
      储德平, 万波, 李红, 等, 2021. 基于ELMO⁃CNN⁃BiLSTM⁃CRF模型的地质实体识别. 地球科学, 46(8): 3039-3048. doi: 10.3799/dqkx.2020.309
      刘如山, 熊明攀, 马强, 等, 2021. 基于仪器地震烈度的变电站高压电气设备易损性研究. 自然灾害学报, 30(2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202102002.htm
      孙得璋, 张仁鹏, 孙柏涛, 2018. 浅谈仪器烈度在地震烈度评定中的应用. 建筑结构, 48(S2): 279-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG2018S2057.htm
      左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(3)

      Article views (1081) PDF downloads(80) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return