• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Huang Faming, Ouyang Weiping, Jiang Shuihua, Fan Xuanmei, Lian Zhipeng, Zhou Chuangbing, 2024. Landslide Susceptibility Prediction Considering Spatio-Temporal Division Principle of Training/Testing Datasets in Machine Learning Models. Earth Science, 49(5): 1607-1618. doi: 10.3799/dqkx.2022.357
    Citation: Huang Faming, Ouyang Weiping, Jiang Shuihua, Fan Xuanmei, Lian Zhipeng, Zhou Chuangbing, 2024. Landslide Susceptibility Prediction Considering Spatio-Temporal Division Principle of Training/Testing Datasets in Machine Learning Models. Earth Science, 49(5): 1607-1618. doi: 10.3799/dqkx.2022.357

    Landslide Susceptibility Prediction Considering Spatio-Temporal Division Principle of Training/Testing Datasets in Machine Learning Models

    doi: 10.3799/dqkx.2022.357
    • Received Date: 2022-07-07
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • In most of the landslide susceptibility prediction (LSP) models, the landslide-non landslide spatial datasets are divided into training/testing datasets according to the principle of spatial random, however, this spatial randomness division inevitably introduces uncertainties into LSP modelling. Theoretically, LSP modelling is based on past landslide inventories to predict the spatial probability of future landslides, which has significant time series characteristics rather than only spatial random characteristics. Therefore, we believe that it is necessary to divide spatial datasets into the model training/testing datasets based on the time series of landslide occurrence. Taking Wencheng County in China as an example, 11 types of environmental factors and 128 time-accurate landslides are obtained; Then, the landslide and non-landslide samples connected with environmental factors are divided into two different types of training/testing datasets according to the principles of landslide time series and spatial random, respectively. The division ratios of training/testing datasets are set as 9∶1, 8∶2, 7∶3, 6∶4 and 5∶5, respectively, to avoid the influences of different ratios on the LSP results. Thus, the training/testing datasets under 10 combined working conditions are obtained. Finally, several typical machine learning models, such as Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forest (RF), are then trained and tested to perform LSP and analyze their uncertainties. Results show that: (1) The LSP uncertainties performed by the time series-based SVM, MLP and RF models are slightly lower than those by spatial random-based models, which verifies the feasibility of dividing by time series; (2) The time series division of training/testing datasets is actually a "deterministic" case among the spatial random division, which is more consistent with the actual situation of landslides. Of course, it is also feasible to carry out spatial random division for training and testing datasets when lacking landslide occurrence time.

       

    • loading
    • Cao, W. G., Pan, D., Xu, Z. J., et al., 2023. Landslide Hazard Susceptibility Mapping in Henan Province: Comparison of Multiple Machine Learning Models. Bulletin of Geological Science and Technology, 1-11 (in Chinese with English abstract).
      Chen, W., Peng, J. B., Hong, H. Y., et al., 2018. Landslide Susceptibility Modelling Using GIS-Based Machine Learning Techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626: 1121-1135. https://doi.org/10.1016/j.scitotenv.2018.01.124
      Guo, Y. H., Dou, J., Xiang, Z. L., et al., 2023. Evaluation of Susceptibility of Wenchuan Coseismic Landslide Using Gradient Lifting Decision Trees and Random Forests Based on Optimal Negative Sample Sampling Strategy. Geological Science and Technology Bulletin, 1-20 (in Chinese with English abstract).
      Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
      Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021. Uncertainties of Landslide Susceptibility Prediction Due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract).
      Huang, F. M., Hu, S. Y., Yan, X. Y., et al., 2022a. Landslide Susceptibility Prediction Modeling Based on Machine Learning and Identification of Main Control Factors. Bulletin of Geological Science and Technology, 41(2): 79-90 (in Chinese with English abstract).
      Huang, F. M., Li, J. F., Wang, J. Y., et al., 2022b. Landslide Susceptibility Prediction Modeling Law Considering Suitability of Linear Environmental Factors and Different Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 44-59 (in Chinese with English abstract).
      Huang, F. M., Ye, Z., Jiang, S. H., et al., 2021. Uncertainty Study of Landslide Susceptibility Prediction Considering the Different Attribute Interval Numbers of Environmental Factors and Different Data-Based Models. CATENA, 202: 105250. https://doi.org/10.1016/j.catena.2021.105250
      Hussin, H. Y., Zumpano, V., Reichenbach, P., et al., 2016. Different Landslide Sampling Strategies in a Grid-Based Bi-Variate Statistical Susceptibility Model. Geomorphology, 253: 508-523. https://doi.org/10.1016/j.geomorph.2015.10.030
      Khanna, K., Martha, T. R., Roy, P., et al., 2021. Effect of Time and Space Partitioning Strategies of Samples on Regional Landslide Susceptibility Modelling. Landslides, 18(6): 2281-2294. https://doi.org/10.1007/s10346-021-01627-3
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
      Li, Y. W., Xu, L. R., Zhang, L. L., et al., 2023. Study on Development Patterns and Susceptibility Evaluation of Coseismic Landslides within Mountainous Regions Influenced by Strong Earthquakes. Earth Science, 48(5): 1960-1976 (in Chinese with English abstract).
      Lombardo, L., Tanyas, H., 2020. Chrono-Validation of Near-Real-Time Landslide Susceptibility Models via Plug-in Statistical Simulations. Engineering Geology, 278: 105818. https://doi.org/10.1016/j.enggeo.2020.105818
      Shirzadi, A., Solaimani, K., Roshan, M. H., et al., 2019. Uncertainties of Prediction Accuracy in Shallow Landslide Modeling: Sample Size and Raster Resolution. CATENA, 178: 172-188. https://doi.org/10.1016/j.catena.2019.03.017
      Wang, L. L., 2016. Feature Processing Methods in the Assessment of the Vulnerability of Rainfall-Type Landslides. Zhejiang University, Hangzhou (in Chinese with English abstract).
      Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
      Zhang, H., Gu, Q. Y., Sun, C. B., et al., 2022. Landslide Susceptibility Mapping in Hilly and Gentle Slope Region Based on Interpretable Machine Learning. Journal of Chongqing Normal University (Natural Science), 39(3): 78-92 (in Chinese with English abstract).
      Zhu, J. X., Zhang, L. Z., Zhou, X. Y., et al., 2014. Characteristics of Temporal Scale of Regional Landslides Susceptibility Assessment. Soil and Water Conservation in China, (6): 18-21, 69 (in Chinese with English abstract).
      曹文庚, 潘登, 徐郅杰, 等, 2023. 河南省滑坡灾害易发性制图研究: 多种机器学习模型的对比. 地质科技通报, 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ202303011.htm
      郭衍昊, 窦杰, 向子林, 等, 2023. 基于优化负样本采样策略的梯度提升决策树与随机森林的汶川同震滑坡易发性评价. 地质科技通报, 1-20.
      黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. doi: 10.3799/dqkx.2022.247
      黄发明, 陈佳武, 唐志鹏, 等, 2021. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
      黄发明, 胡松雁, 闫学涯, 等, 2022a. 基于机器学习的滑坡易发性预测建模及其主控因子识别. 地质科技通报, 41(2): 79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202008.htm
      黄发明, 李金凤, 王俊宇, 等, 2022b. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律. 地质科技通报, 41(2): 44-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202005.htm
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      李永威, 徐林荣, 张亮亮, 等, 2023. 强震山区地震诱发滑坡发育规律与易发性评估. 地球科学, 48(5): 1960-1976. doi: 10.3799/dqkx.2022.224
      王丽丽, 2016. 降雨型滑坡地质灾害易发性评价中的特征处理方法. 杭州: 浙江大学.
      吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
      张虹, 辜庆渝, 孙诚彬, 等, 2022. 基于可解释性机器学习的丘陵缓坡地区滑坡易发性区划研究. 重庆师范大学学报(自然科学版), 39(3): 78-92. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202203012.htm
      朱吉祥, 张礼中, 周小元, 等, 2014. 区域滑坡易发性评价的时间尺度特征分析. 中国水土保持, (6): 18-21, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSB201406008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (682) PDF downloads(87) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return