| Citation: | Huang Fuyou, Zhang Luqing, Zhou Jian, Ma Xiandong, 2022. Influence Factors of Tangential Restitution Coefficient of Rolling Stone Based on Friction and Deformation Energy Dissipation. Earth Science, 47(12): 4583-4595. doi: 10.3799/dqkx.2022.369 |
The tangential restitution coefficient is an important control parameter for the rebound of the rolling stone, and the current theoretical formula can not fully reflect its mechanism. Firstly, according to the different rebound states of the rolling stone, a tangential force model based on the change of incident angle is proposed. Further considering the tangential friction energy dissipation and deformation energy dissipation in the collision process, the theoretical formula of tangential restitution coefficient is derived based on tangential contact theory and kinetic energy theorem. Finally, the influence of various factors on the tangential restitution coefficient is studied. The results show that the tangential restitution coefficient of rolling rebound is mainly affected by tangential deformation. When the rolling stone slips, the influence parameter of incident velocity on the tangential restitution coefficient is
, and the tangential restitution coefficient decreases slowly as it increases, while the influence parameter of incident angle on tangential restitution coefficient is
$ \frac{\mathrm{c}\mathrm{o}{\mathrm{s}}^{\frac{1}{20}}{\beta }_{i}}{\mathrm{t}\mathrm{a}\mathrm{n}{\beta }_{i}} $, and the tangential restitution coefficient increases with its increase, the influence parameter of the deformation modulus of the impacted object on the tangential restitution coefficient is
$ {E}_{2}^{-\frac{5}{8}} $, and the tangential restitution coefficient increases with its increase. The tangential recovery coefficient based on friction and deformation energy dissipation provides a new computational model for the collision process of rolling stone.
|
Azzoni, A., de Freitas, M. H., 1995. Experimentally Gained Parameters, Decisive for Rock Fall Analysis. Rock Mechanics and Rock Engineering, 28(2): 111-124. https://doi.org/10.1007/bf01020064
|
|
Brizmer, V., Kligerman, Y., Etsion, I., 2006. The Effect of Contact Conditions and Material Properties on the Elasticity Terminus of a Spherical Contact. International Journal of Solids and Structures, 43(18): 5736-5749.
|
|
Buzzi, O., Giacomini, A., Spadari, M., 2012. Laboratory Investigation on High Values of Restitution Coefficients. Rock Mechanics and Rock Engineering, 45(1): 35-43. https://doi.org/10.1007/s00603-011-0183-0
|
|
Cagnoli, B., Manga, M., 2003. Pumice-Pumice Collisions and the Effect of the Impact Angle—Art. No. 1636. Geophysical Research Letters, 30(12): 1636.
|
|
Chau, K., Wong, R., Wu, J., 2002. Coefficient of Restitution and Rotational Motions of Rockfall Impacts. International Journal of Rock Mechanics and Mining Sciences, 39(1): 69-77. doi: 10.1016/S1365-1609(02)00016-3
|
|
Chen, Y. L., 2013. Influence of Key Factors on Trajectories of Rockfalls. Chinese Journal of Geotechnical Engineering, 35(Suppl. 2): 191-196(in Chinese with English abstract).
|
|
Chen, Y. Q., Wang, Q. C., 2018. Correction Calculation of Impact Force of Rockfall Based on Hertz Contact Theory and Thornton Elastoplasticity Hypothesis. Science Technology and Engineering, 18(13): 37-41(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2018.13.006
|
|
Day, R. W., 1997. Case Studies of Rockfall in Soft versus Hard Rock. Environmental and Engineering Geoscience, 3(1): 133-140.
|
|
Dussauge, C., Grasso, J., Helmstetter, A., 2003. Statistical Analysis of Rockfall Volume Distributions: Implications for Rockfall Dynamics. Journal of Geophysical Research: Solid Earth, 108(B6): ETG2-1-ETG2-11.
|
|
Giani, G. P., Giacomini, A., Migliazza, M., et al., 2004. Experimental and Theoretical Studies to Improve Rock Fall Analysis and Protection Work Design. Rock Mechanics and Rock Engineering, 37(5): 369-389. https://doi.org/10.1007/s00603-004-0027-2
|
|
He, S. M., Wu, Y., Li, X. P., 2009. Research on Restitution Coefficient of Rock Fall. Rock and Soil Mechanics, 30(3): 623-627(in Chinese with English abstract).
|
|
He, S. M., Zhuang, W. L., Zhang, X., et al., 2013. Research on Rockfall Impact Prevention of Chediguan Bridge Pier, Duwen Road. Chinese Journal of Rock Mechanics and Engineering, 32(Suppl. 2): 3421-3427(in Chinese with English abstract).
|
|
Hu, X. L., Tang, H. M., Zhu, L. X., 2011. Collapse Mode and Mechanism of High Magmatite Rock Slope in Wenchuan Epicentral Area. Earth Science, 36(6): 1149-1154(in Chinese with English abstract).
|
|
Kharaz, A., Gorham, D., Salman, A., 2001. An Experimental Study of the Elastic Rebound of Spheres. Powder Technology, 120(3): 281–291. doi: 10.1016/S0032-5910(01)00283-2
|
|
Labiouse, V., Heidenreich, B., 2009. Half-Scale Experimental Study of Rockfall Impacts on Sandy Slopes. Natural Hazards and Earth System Science, 9(104): 1981-1993.
|
|
Liu, X. F., Zhao, Y. Q., Wang, X. R., et al., 2022. Current Status and Prospects of Research on Fatigue Damage and Failure Precursors of Rocks. Earth Science, 47(6): 2190-2198(in Chinese with English abstract).
|
|
Liu, Y. J., 2002. Study on Fluidifying Theory of Large Highspeed Rockslide (Dissertation). Southwest Jiaotong University, Chengdu(in Chinese with English abstract).
|
|
Luo, G., Cheng, Q. G., Shen, W. G., et al., 2022. Research Status and Development Trend of the High-Altitude Extremely-Energetic Rockfalls. Earth Science, 47(3): 913-934(in Chinese with English abstract).
|
|
Lü, Q., Sun, H. Y., Zhai, S. K., et al., 2003. Evaluation Models of Rockfall Trajectory. Journal of Natural Disasters, 12(2): 79-84 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-4574.2003.02.014
|
|
Maw, N., Barber, J. R., Fawcett, J. N., 1976. The Oblique Impact of Elastic Spheres. Wear, 38(1): 101-114. doi: 10.1016/0043-1648(76)90201-5
|
|
Mangwandi, C., Cheong, Y., Adams, M., et al., 2007. The Coefficient of Restitution of Different Representative Types of Granules. Chemical Engineering Science, 62(1): 437-450.
|
|
Mei, X. F., Hu, X. W., Luo, G., et al., 2019. A Study on the Coefficient of Restitution and Peak Impact of Rockfall Based on the Elastic-Plastic Theory. Journal of Vibration and Shock, 38(8): 14-20(in Chinese with English abstract).
|
|
Mindlin, R. D., 1949. Compliance of Elastic Bodies in Contact. Journal of Applied Mechanics, 16(3): 259-268. doi: 10.1115/1.4009973
|
|
Qin, Z. Y., Lu, Q. S., 2006. Analysis of Impact Process Model Based on Restitution Coefficient. Journal of Dynamics and Control, (4): 294-298(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6553.2006.04.002
|
|
Scheiner, S., Pichler, B., Hellmich, C., et al., 2006. Loading of Soil-Covered Oil and Gas Pipelines Due to Adverse Soil Settlements: Protection against Thermal Dilatation-Induced Wear, Involving Geosynthetics. Computers and Geotechnics, 33(8): 371-380. doi: 10.1016/j.compgeo.2006.08.003
|
|
Schwager, T., Becker, V., Pöschel, T., 2008. Coefficient of Tangential Restitution for Viscoelastic Spheres. The European Physical Journal E, Soft Matter, 27(1): 107-114. https://doi.org/10.1140/epje/i2007-10356-3
|
|
Seifried, R., Schiehlen, W., Eberhard, P., 2005. Numerical and Experimental Evaluation of the Coefficient of Restitution for Repeated Impacts. International Journal of Impact Engineering, 32(1): 508-524.
|
|
Vu-Quoc, L., Lesburg, L., Zhang, X., 2004. An Accurate Tangential Force-Displacement Model for Granular-Flow Simulations: Contacting Spheres with Plastic Deformation, Force-Driven Formulation. Journal of Computational Physics, 196(1): 298-326. https://doi.org/10.1016/j.jcp.2003.10.025
|
|
Wang, Y. S., Cheng, W. Q., Liu, J. W., 2022. Forming Process and Mechanisms of Geo-Hazards in Luding Section of the Sichuan-Tibet Railway. Earth Science, 47(3): 950-958(in Chinese with English abstract).
|
|
Wu, C. Y., Li, L. Y., Thornton, C., 2003. Rebound Behavior of Spheres for Plastic Impacts. International Journal of Impact Engineering, 28: 929-946. doi: 10.1016/S0734-743X(03)00014-9
|
|
Yang, H. Q., Zhou, X. P., 2009. A New Approach to Calculate Trajectory of Rockfall. Rock and Soil Mechanics, 30(11): 3411-3416(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.11.032
|
|
Ye, S. Q., Gong, S. Q., 2015. Research on Normal Restitution Coefficient of Rockfall Collision by Model Tests. China Railway Science, 36(4): 13-19(in Chinese with English abstract).
|
|
Ye, S. Q., Gong, S. Q., Wang, L. F., et al., 2018. Research on Value of Tangential Restitution Coefficient for Rockfall Collision. China Railway Science, 39(1): 8-15(in Chinese with English abstract).
|
|
Zhang, L. Q., Yang, Z. F., Xu, B., 2004. Rock Falls and Rock Fall Hazards. Journal of Engineering Geology, 12(3): 225-231 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2004.03.001
|
|
Zhang, G. C., Tang, H. M., Xiang, X., 2012. Characteristic Parameters Theoretical Analysis of Rockfall Impact on Ground. Chinese Journal of Rock Mechanics and Engineering, 31(Suppl. 1): 2839-2846(in Chinese with English abstract).
|
|
Zhang, G. C., Xiang, X., Tang, H. M., 2011. Field Test and Numerical Calculation of Restitution Coefficient of Rockfall Collision. Chinese Journal of Rock Mechanics and Engineering, 30(6): 1266-1273(in Chinese with English abstract).
|
|
陈颖骐, 王全才, 2018. 基于Hertz弹性理论和Thornton弹塑性假设的滚石冲击力的修正计算. 科学技术与工程, 18(13): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201813006.htm
|
|
陈宇龙, 2013. 滚石运动过程中关键参数的影响分析. 岩土工程学报, 35(增刊2): 191-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2032.htm
|
|
何思明, 吴永, 李新坡, 2009. 滚石冲击碰撞恢复系数研究. 岩土力学, 30(3): 623-627. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200903010.htm
|
|
何思明, 庄卫林, 张雄, 等, 2013. 都汶公路彻底关大桥桥墩抗滚石冲击防护研究. 岩石力学与工程学报, 32(增刊2): 3421-3427. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2056.htm
|
|
胡新丽, 唐辉明, 朱丽霞, 2011. 汶川震中岩浆岩高边坡破坏模式与崩塌机理. 地球科学, 36(6): 1149-1154. doi: 10.3799/dqkx.2011.121
|
|
刘新锋, 赵英群, 王晓睿, 等, 2022. 岩石疲劳损伤及破坏前兆研究现状与展望. 地球科学, 47(6): 2190-2198. doi: 10.3799/dqkx.2021.186
|
|
刘涌江, 2002. 大型高速岩质滑坡流体化理论研究(博士论文). 成都: 西南交通大学.
|
|
罗刚, 程谦恭, 沈位刚, 等, 2022. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133
|
|
吕庆, 孙红月, 翟三扣, 等, 2003. 边坡滚石运动的计算模型. 自然灾害学报, 12(2): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200302013.htm
|
|
梅雪峰, 胡卸文, 罗刚, 等, 2019. 基于弹塑性理论的落石碰撞恢复系数和峰值冲击力研究. 振动与冲击, 38(8): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201908003.htm
|
|
秦志英, 陆启韶, 2006. 基于恢复系数的碰撞过程模型分析. 动力学与控制学报, (4): 294-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK200604001.htm
|
|
王运生, 程万强, 刘江伟, 2022. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制. 地球科学, 47(3): 950-958. doi: 10.3799/dqkx.2021.179
|
|
杨海清, 周小平, 2009. 边坡落石运动轨迹计算新方法. 岩土力学, 30(11): 3411-3416. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200911041.htm
|
|
叶四桥, 巩尚卿, 2015. 落石碰撞法向恢复系数的模型试验研究. 中国铁道科学, 36(4): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201504004.htm
|
|
叶四桥, 巩尚卿, 王林峰, 等, 2018. 落石碰撞切向恢复系数的取值研究. 中国铁道科学, 39(1): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201801003.htm
|
|
张路青, 杨志法, 许兵, 2004. 滚石与滚石灾害. 工程地质学报, 12(3): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200403000.htm
|
|
章广成, 唐辉明, 向欣, 2012. 冲击地面过程中落石特征参量的理论分析. 岩石力学与工程学报, 31(增刊1): 2839-2846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1030.htm
|
|
章广成, 向欣, 唐辉明, 2011. 落石碰撞恢复系数的现场试验与数值计算. 岩石力学与工程学报, 30(6): 1266-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106026.htm
|