• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 9
    Sep.  2022
    Turn off MathJax
    Article Contents
    Xiao Wenjiao, Song Dongfang, Zhang Ji’en, Mao Qigui, Ao Songjian, Han Chunming, Wan Bo, Zhang Zhiyong, 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380
    Citation: Xiao Wenjiao, Song Dongfang, Zhang Ji’en, Mao Qigui, Ao Songjian, Han Chunming, Wan Bo, Zhang Zhiyong, 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380

    Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects

    doi: 10.3799/dqkx.2022.380
    • Received Date: 2022-09-01
    • Publish Date: 2022-09-25
    • Subduction zone, known as the subduction factory, is the most remarkable characteristics of plate tectonics and is the largest material circulation system on the earth. Subduction behaves as an important engine for driving and maintaining plate movement. A typical subduction zone comprises trench, accretionary wedge, forearc basin, magmatic arc, back-arc basin (or retroarc foreland basin). In some special circumstances, such as ridge subduction, subduction of young oceanic slab and seamount subduction, some special structure such as flat-slab subduction and subduction erosion may occur, resulting in the absence of arc magmatism, accretionary complex or forearc basin. Subducted slab may get through the mantle transition zone into the lower mantle and even reach the core-mantle boundary, and bring the crustal rocks into the deep earth, which ascend to earth's surface in the form of mantle plume. Subduction zone is characterized by active deformation including strike-slip, compression, and extension and structural overprinting. Magmatic arc and accretionary complex may migrate oceanward or landward along with the trench, leading to cyclic compression and extension of the upper plate and the formation of complex paleogeographic patterns. The accretion of microcontinent, arc, seamount and oceanic plateau can chock the subduction zone and lead to subduction zone transference or subduction polarity reversal with the formation of new subduction zone outboard. The detailed deep structure of subduction zone, subduction initiation mechanism, and the interplay between subduction and mantle plume are the research fronts of subduction zone. Conducting geophysical deep exploration of subduction zones, comparative studies of suture zones and active subduction zones, and numerical simulation of subduction zone geodynamics are important ways to solve the above scientific problems.

       

    • loading
    • Almeida, J., Riel, N., Rosas, F. M., et al., 2022. Self-Replicating Subduction Zone Initiation by Polarity Reversal. Communications Earth & Environment, 3: 55. https://doi.org/10.1038/s43247-022-00380-2
      Antonijevic, S. K., Wagner, L. S., Kumar, A., et al., 2015. The Role of Ridges in the Formation and Longevity of Flat Slabs. Nature, 524(7564): 212-215. https://doi.org/10.1038/nature14648
      Bahadori, A., Holt, W. E., 2019. Geodynamic Evolution of Southwestern North America since the Late Eocene. Nature Communications, 10: 5213. https://doi.org/10.1038/s41467-019-12950-8
      Barazangi, M., Isacks, B. L., 1976. Spatial Distribution of Earthquakes and Subduction of the Nazca Plate Beneath South America. Geology, 4(11): 686-692. https://doi.org/10.1130/0091-7613(1976)4686:sdoeas>2.0.co;2 doi: 10.1130/0091-7613(1976)4686:sdoeas>2.0.co;2
      Beate, B., Monzier, M., Spikings, R., et al., 2001. Mio-Pliocene Adakite Generation Related to Flat Subduction in Southern Ecuador: The Quimsacocha Volcanic Center. Earth and Planetary Science Letters, 192(4): 561-570. https://doi.org/10.1016/S0012-821X(01)00466-6
      Berrocal, J., Fernandez, C., 2005. Flat Subduction Beneath the Andean Region from Seismological Evidences. 6th International Symposium on Andean Geodynamics, Barcelona.
      Bian, Q. T., Luo, X. Q., Chen, H. H., et al., 1999. Zircon U-Pb Age of Granodiorite-Tonalite in the A'nyemaqen Ophiolitic Belt and Its Tectonic Significance. Chinese Journal of Geology, 34(4): 420-426 (in Chinese with English abstract).
      Biryol, C. B., Beck, S. L., Zandt, G., et al., 2011. Segmented African Lithosphere beneath the Anatolian Region Inferred from Teleseismic P-Wave Tomography. Geophysical Journal International, 184(3): 1037-1057. https://doi.org/10.1111/j.1365-246X.2010.04910.x
      Bloomer, S. H., Fisher, R. L., 1987. Petrology and Geochemistry of Igneous Rocks from the Tonga Trench: A Non-Accreting Plate Boundary. The Journal of Geology, 95(4): 469-495. https://doi.org/10.1086/629144
      Bonev, N., Stampfli, G., 2011. Alpine Tectonic Evolution of a Jurassic Subduction-Accretionary Complex: Deformation, Kinematics and 40Ar/39Ar Age Constraints on the Mesozoic Low-Grade Schists of the Circum-Rhodope Belt in the Eastern Rhodope-Thrace Region, Bulgaria-Greece. Journal of Geodynamics, 52(2): 143-167. https://doi.org/10.1016/j.jog.2010.12.006
      Bonnardot, M. A., Régnier, M., Christova, C., et al., 2009. Seismological Evidence for a Slab Detachment in the Tonga Subduction Zone. Tectonophysics, 464(1-4): 84-99. https://doi.org/10.1016/j.tecto.2008.10.011
      Bourdon, E., Eissen, J. P., Gutscher, M. A., et al., 2003. Magmatic Response to Early Aseismic Ridge Subduction: The Ecuadorian Margin Case (South America). Earth and Planetary Science Letters, 205(3-4): 123-138. https://doi.org/10.1016/S0012-821X(02)01024-5
      Bourgois, J., Lagabrielle, Y., Martin, H., et al., 2016. A Review on Forearc Ophiolite Obduction, Adakite-Like Generation, and Slab Window Development at the Chile Triple Junction Area: Uniformitarian Framework for Spreading-Ridge Subduction. Pure and Applied Geophysics, 173(10-11): 3217-3246. https://doi.org/10.1007/s00024-016-1317-9
      Breitsprecher, K., Thorkelson, D. J., 2009. Neogene Kinematic History of Nazca-Antarctic-Phoenix Slab Windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464(1-4): 10-20. https://doi.org/10.1016/j.tecto.2008.02.013
      Brown, M., 2010. Paired Metamorphic Belts Revisited. Gondwana Research, 18(1): 46-59. https://doi.org/10.1016/j.gr.2009.11.004
      Burke, K., Ashwal, L. D., Webb, S. J., 2003. New Way to Map Old Sutures Using Deformed Alkaline Rocks and Carbonatites. Geology, 31(5): 391-394. https://doi.org/10.1130/0091-7613(2003)0310391:nwtmos>2.0.co;2 doi: 10.1130/0091-7613(2003)0310391:nwtmos>2.0.co;2
      Burkett, E., Gurnis, M., 2013. Stalled Slab Dynamics. Lithosphere, 5(1): 92-97. https://doi.org/10.1130/l249.1
      Cawood, P. A., Buchan, C., 2007. Linking Accretionary Orogenesis with Supercontinent Assembly. Earth-Science Reviews, 82(3-4): 217-256. https://doi.org/10.1016/j.earscirev.2007.03.003
      Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
      Chen, L., Wang, X., Liang, X. F., et al., 2020. Subduction Tectonics Vs. Plume Tectonics-Discussion on Driving Forces for Plate Motion. Science China Earth Sciences, 63(3): 315-328. https://doi.org/10.1007/s11430-019-9538-2
      Chen, Y. C., Xiao, W. J., Windley, B. F., et al., 2017. Late Devonian-Early Permian Subduction-Accretion of the Zharma-Saur Oceanic Arc, West Junggar (NW China): Insights from Field Geology, Geochemistry and Geochronology. Journal of Asian Earth Sciences, 145: 424-445. https://doi.org/10.1016/j.jseaes.2017.06.010
      Chen, Y. C., Zhang, J. E., Hou, Q. L., et al., 2021a. The Basic Characteristics of Accretion Arcs and Its Geological Implications. Chinese Journal of Geology (Scientia Geologica Sinica), 56(2): 615-634 (in Chinese with English abstract).
      Chen, Y. C., Zhang, J. E., Tian, Z. H., et al., 2021b. The Structure of Suture in Orogenic Belts and Its Tectonic Implications. Acta Petrologica Sinica, 37(8): 2324-2338 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.08.05
      Chen, Y., Li, W., Yuan, X. H., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13-24. https://doi.org/10.1016/j.epsl.2014.12.041
      Clift, P., Vannucchi, P., 2004. Controls on Tectonic Accretion Versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. Reviews of Geophysics, 42(2): RG2001. https://doi.org/10.1029/2003RG000127
      Cloos, M., Shreve, R. L., 1988. Subduction-Channel Model of Prism Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins: 2. Implications and Discussion. Pure and Applied Geophysics, 128(3-4): 501-545. https://doi.org/10.1007/BF00874549
      Coleman, M., Hodges, K., 1995. Evidence for Tibetan Plateau Uplift before 14 Myr Ago from a New Minimum Age for East-West Extension. Nature, 374: 49-52. https://doi.org/10.1038/374049A0
      Collins, W. J., Belousova, E. A., Kemp, A. I. S., et al., 2011. Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data. Nature Geoscience, 4(5): 333-337. https://doi.org/10.1038/ngeo1127
      Collins, W. J., Huang, H. Q., Bowden, P., et al., 2019. Repeated S- I- A-Type Granite Trilogy in the Lachlan Orogen, and Geochemical Contrasts with A-Type Granites in Nigeria: Implications for Petrogenesis and Tectonic Discrimination. Geological Society London Special Publications, 491(1): SP491-2018-159. https://doi.org/10.1144/SP491-2018-159
      Conrad, C. P., Steinberger, B., Torsvik, T. H., 2013. Stability of Active Mantle Upwelling Revealed by Net Characteristics of Plate Tectonics. Nature, 498(7455): 479-482. https://doi.org/10.1038/nature12203
      Cooke, D. R., Hollings, P., Walshe, J. L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. https://doi.org/10.2113/gsecongeo.100.5.801
      Crameri, F., Magni, V., Domeier, M., et al., 2020. A Transdisciplinary and Community-Driven Database to Unravel Subduction Zone Initiation. Nature Communications, 11: 3750. https://doi.org/10.1038/s41467-020-17522-9
      Dal Piaz, G. V., Bistacchi, A., Massironi, M., 2003. Geological Outline of the Alps. Episodes, 26(3): 175-180 doi: 10.18814/epiiugs/2003/v26i3/004
      Dal Zilio, L., 2018. Subduction-Driven Earth Machine. Nature Geoscience, 11(4): 229. https://doi.org/10.1038/s41561-018-0102-z
      Dal Zilio, L., Faccenda, M., Capitanio, F., 2018. The Role of Deep Subduction in Supercontinent Breakup. Tectonophysics, 746: 312-324. https://doi.org/10.1016/j.tecto.2017.03.006
      Daly, K. A., Abers, G. A., Mann, M. E., et al., 2021. Subduction of an Oceanic Plateau across Southcentral Alaska: High-Resolution Seismicity. Journal of Geophysical Research: Solid Earth, 126(11): e2021JB022809. https://doi.org/10.1029/2021JB022809
      Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821X(94)00237-S
      DeCelles, P. G., Ducea, M. N., Kapp, P., et al., 2009. Cyclicity in Cordilleran Orogenic Systems. Nature Geoscience, 2(4): 251-257. https://doi.org/10.1038/ngeo469
      DeLong, S. E., Schwarz, W. M., Anderson, R. N., 1979. Thermal Effects of Ridge Subduction. Earth and Planetary Science Letters, 44(2): 239-246. https://doi.org/10.1016/0012-821X(79)90172-9
      Dennis, A. J., 1991. Is the Central Piedmont Suture a Low-Angle Normal Fault? Geology, 19(11): 1081-1084. https://doi.org/10.1130/0091-7613(1991)019<1081:ITCPSA>2.3.CO;2 doi: 10.1130/0091-7613(1991)019<1081:ITCPSA>2.3.CO;2
      Dewey, J., Spall, H., 1975. Pre-Mesozoic Plate Tectonics: How Far Back in Earth History can the Wilson Cycle be Extended? Geology, 3(8): 422-424. https://doi.org/10.1130/0091-7613%281975%293%3C422%3APPTHFB%3E2.0.CO%3B2
      Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Bulletin of the Geological Society of America, 123(3-4): 387-411 doi: 10.1130/B30446.1
      Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): TC3001. https://doi.org/10.1029/2004TC001729
      Dominguez, S., Lallemand, S. E., Malavieille, J., et al., 1998. Upper Plate Deformation Associated with Seamount Subduction. Tectonophysics, 293(3-4): 207-224. https://doi.org/10.1016/S0040-1951(98)00086-9
      Ducea, M. N., Saleeby, J. B., Bergantz, G., 2015. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences, 43: 299-331. https://doi.org/10.1146/annurev-earth-060614-105049
      Ely, K. S., Sandiford, M., 2010. Seismic Response to Slab Rupture and Variation in Lithospheric Structure Beneath the Savu Sea, Indonesia. Tectonophysics, 483(1-2): 112-124. https://doi.org/10.1016/j.tecto.2009.08.027
      English, J. M., Johnston, S. T., 2004. The Laramide Orogeny: What Were the Driving Forces? International Geology Review, 46(9): 833-838. https://doi.org/10.2747/0020-6814.46.9.833
      Faccenna, C., Becker, T. W., 2010. Shaping Mobile Belts by Small-Scale Convection. Nature, 465(7298): 602-605. https://doi.org/10.1038/nature09064
      Finzel, E. S., Trop, J. M., Ridgway, K. D., et al., 2011. Upper Plate Proxies for Flat-Slab Subduction Processes in Southern Alaska. Earth and Planetary Science Letters, 303(3-4): 348-360. https://doi.org/10.1016/j.epsl.2011.01.014
      Flórez-Rodríguez, A. G., Schellart, W. P., Strak, V., 2019. Impact of Aseismic Ridges on Subduction Systems: Insights from Analog Modeling. Journal of Geophysical Research: Solid Earth, 124(6): 5951-5969. https://doi.org/10.1029/2019JB017488
      Forand, D., Evans, J. P., Janecke, S. U., et al., 2018. Insights into Fault Processes and the Geometry of the San Andreas Fault System: Analysis of Core from the Deep Drill Hole at Cajon Pass, California. Geological Society of America Bulletin, 130: 64-92. https://doi.org/10.1130/B31681.1
      Forsyth, D., Uyeda, S., 1975. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 43(1): 163-200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
      Fukao, Y., Obayashi, M., 2013. Subducted Slabs Stagnant Above, Penetrating Through, and Trapped below the 660 km Discontinuity. Journal of Geophysical Research: Solid Earth, 118(11): 5920-5938. https://doi.org/10.1002/2013JB010466
      Gao, L., Liu, S. W., Zhang, B., et al., 2019. A Ca. 2.8-Ga Plume-Induced Intraoceanic Arc System in the Eastern North China Craton. Tectonics, 38(5): 1694-1717. https://doi.org/10.1029/2018TC005432
      Garzanti, E., Radeff, G., Malusà, M. G., 2018. Slab Breakoff: A Critical Appraisal of a Geological Theory as Applied in Space and Time. Earth-Science Reviews, 177: 303-319. https://doi.org/10.1016/j.earscirev.2017.11.012
      Gaschnig, R. M., Vervoort, J. D., Lewis, R. S., et al., 2010. Migrating Magmatism in the Northern US Cordillera: In Situ U-Pb Geochronology of the Idaho Batholith. Contributions to Mineralogy and Petrology, 159(6): 863-883. https://doi.org/10.1007/s00410-009-0459-5
      Geng, H. Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction? Chemical Geology, 266(3-4): 364-389. https://doi.org/10.1016/j.chemgeo.2009.07.001
      Gerya, T. V., Stern, R. J., Baes, M., et al., 2015. Plate Tectonics on the Earth Triggered by Plume-Induced Subduction Initiation. Nature, 527(7577): 221-225. https://doi.org/10.1038/nature15752
      Goes, S., Capitanio, F. A., Morra, G., 2008. Evidence of Lower-Mantle Slab Penetration Phases in Plate Motions. Nature, 451(7181): 981-984. https://doi.org/10.1038/nature06691
      Govers, R., Wortel, M. J. R., 2005. Lithosphere Tearing at STEP Faults: Response to Edges of Subduction Zones. Earth and Planetary Science Letters, 236(1-2): 505-523. https://doi.org/10.1016/j.epsl.2005.03.022
      Greene, A. R., Scoates, J. S., Weis, D., et al., 2010. The Architecture of Oceanic Plateaus Revealed by the Volcanic Stratigraphy of the Accreted Wrangellia Oceanic Plateau. Geosphere, 6(1): 47-73. https://doi.org/10.1130/ges00212.1
      Grove, M., Bebout, G. E., Jacobson, C. E., et al., 2008. The Catalina Schist: Evidence for Middle Cretaceous Subduction Erosion of Southwestern North America. In: Draut, A. E., Clift, P. D., Scholl, D. W., eds., Formation and Applications of the Sedimentary Record in Arc Collision Zones. Geological Society of America, Boulder.
      Gutscher, M. A., 2001. An Andean Model of Interplate Coupling and Strain Partitioning Applied to the Flat Subduction Zone of SW Japan (Nankai Trough). Tectonophysics, 333(1-2): 95-109. https://doi.org/10.1016/S0040-1951(00)00269-9
      Gutscher, M. A., Olivet, J. L., Aslanian, D., et al., 1999. The "Lost Inca Plateau": Cause of Flat Subduction Beneath Peru? Earth and Planetary Science Letters, 171(3): 335-341. https://doi.org/10.1016/S0012-821X(99)00153-3
      Gutscher, M. A., Spakman, W., Bijwaard, H., et al., 2000. Geodynamics of Flat Subduction: Seismicity and Tomographic Constraints from the Andean Margin. Tectonics, 19(5): 814-833. https://doi.org/10.1029/1999TC001152
      Hager, B. H., O'Connell, R. J., 1981. A Simple Global Model of Plate Dynamics and Mantle Convection. Journal of Geophysical Research: Solid Earth, 86(B6): 4843-4867. https://doi.org/10.1029/JB086iB06p04843
      Hall, R., 2017. Southeast Asia: New Views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45(1): 331-358. https://doi.org/10.1146/annurev-earth-063016-020633
      Hamilton, W., 1969. Mesozoic California and the Underflow of Pacific Mantle. Geological Society of America Bulletin, 80(12): 2409-2430. doi: 10.1130/0016-7606(1969)80[2409:MCATUO]2.0.CO;2
      Haschke, M. R., Scheuber, E., Günther, A., et al., 2002. Evolutionary Cycles during the Andean Orogeny: Repeated Slab Breakoff and Flat Subduction? Terra Nova, 14(1): 49-55. https://doi.org/10.1046/j.1365-3121.2002.00387.x
      Henry, C. D., Aranda-Gomez, J. J., 2000. Plate Interactions Control Middle-Late Miocene, Proto-Gulf and Basin and Range Extension in the Southern Basin and Range. Tectonophysics, 318(1-4): 1-26. https://doi.org/10.1016/S0040-1951(99)00304-2
      Hofmann, A. W., White, W. M., 1982. Mantle Plumes from Ancient Oceanic Crust. Earth and Planetary Science Letters, 57(2): 421-436. https://doi.org/10.1016/0012-821X(82)90161-3
      Hopson, C. A., Mattinson, J. M., Pessagno, E. A., et al., 2008. California Coast Range Ophiolite: Composite Middle and Late Jurassic Oceanic Lithosphere. In: Wright, J. E., Shervais, J. W., eds., Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson. Geological Society of America, Boulder.
      Horton, B. K., 2021. Unconformity Development in Retroarc Foreland Basins: Implications for the Geodynamics of Andean-Type Margins. Journal of the Geological Society, 179(3). https://doi.org/10.1144/jgs2020-263
      Hou, Z. Q., Zhao, Z. D., Gao, Y. F., et al., 2006. Tearing and Dischronal Subduction of the Indian Continental Slab: Evidence from Cenozoic Gangdese Volcano-Magmatic Rocks in South Tibet. Acta Petrologica Sinica, 22(4): 761-774 (in Chinese with English abstract).
      Ichiki, M., Sumitomo, N., Kagiyama, T., 2000. Resistivity Structure of High-Angle Subduction Zone in the Southern Kyushu District, Southwestern Japan. Earth, Planets and Space, 52: 539-548. https://doi.org/10.1186/BF03351661
      Ingersoll, R. V., 2012. Tectonics of Sedimentary Basins, with Revised Nomenclature. In: Busby, C., Azor, A., eds., Tectonics of Sedimentary Basins: Recent Advances (First Edition). Blackwell Publishing Ltd., Oxford.
      Isozaki, Y., 1996. Anatomy and Genesis of a Subduction-Related Orogen: A New View of Geotectonic Subdivision and Evolution of the Japanese Islands. Island Arc, 5(3): 289-320. https://doi.org/10.1111/j.1440-1738.1996.tb00033.x
      Jara, J. J., Barra, F., Reich, M., et al., 2021. Episodic Construction of the Early Andean Cordillera Unravelled by Zircon Petrochronology. Nature Communications, 12: 4930. https://doi.org/10.1038/s41467-021-25232-z
      Johnston, S. T., Canil, D., 2007. Crustal Architecture of SW Yukon, Northern Cordillera: Implications for Crustal Growth in a Convergent Margin Orogen. Tectonics, 26(1): TC1006. https://doi.org/10.1029/2006TC001950
      Johnston, S. T., Mazzoli, S., 2009. The Calabrian Orocline: Buckling of a Previously more Linear Orogen. Geological Society, London, Special Publications, 327(1): 113-125. https://doi.org/10.1144/sp327.7
      Jones, D. L., 1990. Synopsis of Late Palaeozoic and Mesozoic Terrane Accretion within the Cordillera of Western North America. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 331: 479-486. https://doi.org/10.1098/rsta.1990.0084
      Kerr, A. C., Tarney, J., 2005. Tectonic Evolution of the Caribbean and Northwestern South America: The Case for Accretion of Two Late Cretaceous Oceanic Plateaus. Geology, 33(4): 269. https://doi.org/10.1130/g21109.1
      Kneller, E. A., van Keken, P. E., 2007. Trench-Parallel Flow and Seismic Anisotropy in the Mariana and Andean Subduction Systems. Nature, 450(7173): 1222-1225. https://doi.org/10.1038/nature06429
      Korenaga, J., 2013. Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations. Annual Review of Earth and Planetary Sciences, 41(1): 117-151. https://doi.org/10.1146/annurev-earth-050212-124208
      Kusky, T. M., Windley, B. F., Safonova, I., et al., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 24(2): 501-547. https://doi.org/10.1016/j.gr.2013.01.004
      Levin, V., Shapiro, N., Park, J., et al., 2002. Seismic Evidence for Catastrophic Slab Loss Beneath Kamchatka. Nature, 418(6899): 763-767. https://doi.org/10.1038/nature00973
      Li, J. L., Hao, J., Chai, Y. C., et al., 1993. Consortium of Mélange and Accretionary Arc in Southern Jiangxi: Suture Zone of the Turkey-Type Collisional Orogenic Belt. In: Li, J. L., ed., Lithospheric Structure and Geological Evolution of the Southeast China Continent. Metallurgical Industry Press, Beijing (in Chinese).
      Li, C., van der Hilst, R. D., Engdahl, E. R., et al., 2008. A New Global Model for P Wave Speed Variations in Earth's Mantle. Geochemistry, Geophysics, Geosystems, 9(5): Q05018. https://doi.org/10.1029/2007GC001806
      Li, J. L., Klemd, R., Gao, J., et al., 2016. Poly-Cyclic Metamorphic Evolution of Eclogite: Evidence for Multistage Burial-Exhumation Cycling in a Subduction Channel. Journal of Petrology, 57(1): 119-146. https://doi.org/10.1093/petrology/egw002
      Li, J. L., Schwarzenbach, E. M., John, T., et al., 2020. Uncovering and Quantifying the Subduction Zone Sulfur Cycle from the Slab Perspective. Nature Communications, 11: 514. https://doi.org/10.1038/s41467-019-14110-4
      Li, J. T., Song, X. D., 2018. Tearing of Indian Mantle Lithosphere from High-Resolution Seismic Images and Its Implications for Lithosphere Coupling in Southern Tibet. Proceedings of the National Academy of Sciences of the United States of America, 115(33): 8296-8300. https://doi.org/10.1073/pnas.1717258115
      Li, L., Sun, N. Y., Shi, W. G., et al., 2022. Elastic Anomalies across the α-β Phase Transition in Orthopyroxene: Implication for the Metastable Wedge in the Cold Subduction Slab. Geophysical Research Letters, 49(16): e2022GL099366. https://doi.org/10.1029/2022gl099366
      Li, S. Z., Wang, G. Z., Suo, Y. H., et al., 2019. Driving Force of Plate Tectonics: Origin and Nature. Geotectonica et Metallogenia, 43(4): 605-643 (in Chinese with English abstract).
      Li, T. D., Xiao, Q. H., Pan, G. T., et al., 2019. A Consideration about the Development of Ocean Plate Geology. Earth Science, 44(5): 1441-1451 (in Chinese with English abstract).
      Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/G23193A.1
      Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia: Did it Start with a Mantle Plume Beneath South China? Earth and Planetary Science Letters, 173(3): 171-181. https://doi.org/10.1016/S0012-821X(99)00240-X
      Li, Z. X., Mitchell, R. N., Spencer, C. J., et al., 2019. Decoding Earth's Rhythms: Modulation of Supercontinent Cycles by Longer Superocean Episodes. Precambrian Research, 323: 1-5. https://doi.org/10.1016/j.precamres.2019.01.009
      Lin, S. F., Xing, G. F., Davis, D. W., et al., 2018. Appalachian-Style Multi-Terrane Wilson Cycle Model for the Assembly of South China. Geology, 46(4): 319-322. https://doi.org/10.1130/g39806.1
      Lithgow-Bertelloni, C., Richards, M. A., 1995. Cenozoic Plate Driving Forces. Geophysical Research Letters, 22(11): 1317-1320. https://doi.org/10.1029/95GL01325
      Liu, L. J., Gurnis, M., Seton, M., et al., 2010. The Role of Oceanic Plateau Subduction in the Laramide Orogeny. Nature Geoscience, 3(5): 353-357. https://doi.org/10.1038/ngeo829
      Liu, Y., Xiao, W. J., Windley, B. F., et al., 2021. Three Stages of Arc Migration in the Carboniferous-Triassic in Northern Qiangtang, Central Tibet, China: Ridge Subduction and Asynchronous Slab Rollback of the Jinsha Paleotethys. Geological Society of America Bulletin, 133(11-12): 2485-2500. https://doi.org/10.1130/B35906.1
      Luo, J., Xiao, W. J., Wakabayashi, J., et al., 2017. The Zhaheba Ophiolite Complex in Eastern Junggar (NW China): Long Lived Supra-Subduction Zone Ocean Crust Formation and Its Implications for the Tectonic Evolution in Southern Altaids. Gondwana Research, 43: 17-40. https://doi.org/10.1016/j.gr.2015.04.004
      Manea, V. C., Leeman, W. P., Gerya, T., et al., 2014. Subduction of Fracture Zones Controls Mantle Melting and Geochemical Signature above Slabs. Nature Communications, 5(1): 5095. https://doi.org/10.1038/ncomms6095
      Manea, V. C., Pérez-Gussinyé, M., Manea, M., 2012. Chilean Flat Slab Subduction Controlled by Overriding Plate Thickness and Trench Rollback. Geology, 40(1): 35-38. https://doi.org/10.1130/g32543.1
      Mann, M. E., Abers, G. A., Daly, K. A., et al., 2022. Subduction of an Oceanic Plateau across Southcentral Alaska: Scattered-Wave Imaging. Journal of Geophysical Research: Solid Earth, 127(1): e2021JB022697. https://doi.org/10.1029/2021JB022697
      Mann, P., Taira, A., 2004. Global Tectonic Significance of the Solomon Islands and Ontong Java Plateau Convergent Zone. Tectonophysics, 389(3-4): 137-190. https://doi.org/10.1016/j.tecto.2003.10.024
      Mantovani, E., Albarello, D., Tamburelli, C., et al., 1996. Evolution of the Tyrrhenian Basin and Surrounding Regions as a Result of the Africa-Eurasia Convergence. Journal of Geodynamics, 21(1): 35-72. https://doi.org/10.1016/0264-3707(95)00011-9
      Maruyama, S., Masago, H., Katayama, I., et al., 2010. A New Perspective on Metamorphism and Metamorphic Belts. Gondwana Research, 18(1): 106-137. https://doi.org/10.1016/j.gr.2010.03.007
      Maruyama, S., Santosh, M., Zhao, D., 2007. Superplume, Supercontinent, and Post-Perovskite: Mantle Dynamics and Anti-Plate Tectonics on the Core-Mantle Boundary. Gondwana Research, 11(1-2): 7-37. https://doi.org/10.1016/j.gr.2006.06.003
      Maunder, B., Prytulak, J., Goes, S., et al., 2020. Rapid Subduction Initiation and Magmatism in the Western Pacific Driven by Internal Vertical Forces. Nature Communications, 11(1): 1874. https://doi.org/10.1038/s41467-020-15737-4
      Michaud, F., Royer, J. Y., Bourgois, J., et al., 2006. Oceanic-Ridge Subduction Vs. Slab Break Off: Plate Tectonic Evolution along the Baja California Sur Continental Margin since 15 Ma. Geology, 34(1): 13-16. https://doi.org/10.1130/g22050.1
      Miyashiro, A., 1973. Paired and Unpaired Metamorphic Belts. Tectonophysics, 17(3): 241-254. https://doi.org/10.1016/0040-1951(73)90005-X
      Morell, K. D., 2016. Seamount, Ridge, and Transform Subduction in Southern Central America. Tectonics, 35(2): 357-385. https://doi.org/10.1002/2015TC003950
      Morell, K. D., Fisher, D. M., Gardner, T. W., 2008. Inner Forearc Response to Subduction of the Panama Fracture Zone, Southern Central America. Earth and Planetary Science Letters, 265(1-2): 82-95. https://doi.org/10.1016/j.epsl.2007.09.039
      Morgan, W. J., 1971. Convection Plumes in the Lower Mantle. Nature, 230(5288): 42-43. https://doi.org/10.1038/230042a0
      Morgan, W. J., 1972. Deep Mantle Convection Plumes and Plate Motions. AAPG Bulletin, 56(2): 203-213. https://doi.org/10.1306/819A3E50-16C5-11D7-8645000102C1865D
      Noda, A., 2016. Forearc Basins: Types, Geometries, and Relationships to Subduction Zone Dynamics. Geological Society of America Bulletin, 128: 879-895. https://doi.org/10.1130/B31345.1
      Palin, R. M., Santosh, M., 2021. Plate Tectonics: What, Where, Why, and When? Gondwana Research, 100: 3-24. https://doi.org/10.1016/j.gr.2020.11.001
      Paterson, S. R., Okaya, D., Memeti, V., et al., 2011. Magma Addition and Flux Calculations of Incrementally Constructed Magma Chambers in Continental Margin Arcs: Combined Field, Geochronologic, and Thermal Modeling Studies. Geosphere, 7(6): 1439-1468. https://doi.org/10.1130/ges00696.1
      Pearce, J. A., Stern, R. J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. In: Christie, D. M., Fisher, C. R., Lee, S. M., et al., eds., Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D.C. .
      Pfiffner, O. A., Gonzalez, L., 2013. Mesozoic-Cenozoic Evolution of the Western Margin of South America: Case Study of the Peruvian Andes. Geosciences (Switzerland), 3(2): 262-310. https://doi.org/10.3390/geosciences3020262
      Piromallo, C., Morelli, A., 2003. P Wave Tomography of the Mantle under the Alpine-Mediterranean Area. Journal of Geophysical Research: Solid Earth, 108(B2): 2065. https://doi.org/10.1029/2002JB001757
      Plunder, A., Bandyopadhyay, D., Ganerød, M., et al., 2020. History of Subduction Polarity Reversal during Arc- Continent Collision: Constraints from the Andaman Ophiolite and Its Metamorphic Sole. Tectonics, 39(6): e2019TC005762. https://doi.org/10.1029/2019TC005762
      Pownall, J. M., Hall, R., Lister, G. S., 2016. Rolling Open Earth's Deepest Forearc Basin. Geology, 44(11): 947-950. https://doi.org/10.1130/g38051.1
      Raimbourg, H., Augier, R., Famin, V., et al., 2014. Long-Term Evolution of an Accretionary Prism: The Case Study of the Shimanto Belt, Kyushu, Japan. Tectonics, 33(6): 936-959. https://doi.org/10.1002/2013TC003412
      Ramos, V. A., 2010. The Tectonic Regime along the Andes: Present-Day and Mesozoic Regimes. Geological Journal, 45(1): 2-25. https://doi.org/10.1002/gj.1193
      Rosenbaum, G., Gasparon, M., Lucente, F. P., et al., 2008. Kinematics of Slab Tear Faults during Subduction Segmentation and Implications for Italian Magmatism. Tectonics, 27(2): TC2008. https://doi.org/10.1029/2007TC002143
      Rosenbaum, G., Li, P. F., Rubatto, D., 2012. The Contorted New England Orogen (Eastern Australia): New Evidence from U-Pb Geochronology of Early Permian Granitoids. Tectonics, 31(1): TC1006. https://doi.org/10.1029/2011TC002960
      Rosenbaum, G., Sandiford, M., Caulfield, J., et al., 2019. A Trapdoor Mechanism for Slab Tearing and Melt Generation in the Northern Andes. Geology, 47(1): 23-26. https://doi.org/10.1130/g45429.1
      Sang, M., Xiao, W. J., Windley, B. F., 2020. Unravelling a Devonian-Triassic Seamount Chain in the South Tianshan High-Pressure/Ultrahigh-Pressure Accretionary Complex in the Atbashi Area (Kyrgyzstan). Geological Journal, 55(3): 2300-2317. https://doi.org/10.1002/gj.3776
      Schellart, W. P., 2008. Overriding Plate Shortening and Extension above Subduction Zones: A Parametric Study to Explain Formation of the Andes Mountains. Geological Society of America Bulletin, 120(11-12): 1441-1454. https://doi.org/10.1130/b26360.1
      Schellart, W. P., Lister, G. S., Toy, V. G., 2006. A Late Cretaceous and Cenozoic Reconstruction of the Southwest Pacific Region: Tectonics Controlled by Subduction and Slab Rollback Processes. Earth-Science Reviews, 76(3-4): 191-233. https://doi.org/10.1016/j.earscirev.2006.01.002
      Schildgen, T. F., Yildirim, C., Cosentino, D., et al., 2014. Linking Slab Break-Off, Hellenic Trench Retreat, and Uplift of the Central and Eastern Anatolian Plateaus. Earth-Science Reviews, 128: 147-168. https://doi.org/10.1016/j.earscirev.2013.11.006
      Schmandt, B., Humphreys, E., 2011. Seismically Imaged Relict Slab from the 55 Ma Siletzia Accretion to the Northwest United States. Geology, 39(2): 175-178. https://doi.org/10.1130/G31558.1
      Scholz, C. H., Small, C., 1997. The Effect of Seamount Subduction on Seismic Coupling. Geology, 25(6): 487-490. https://doi.org/10.1130/0091-7613(1997)0250487:teosso>2.3.co;2 doi: 10.1130/0091-7613(1997)0250487:teosso>2.3.co;2
      Sdrolias, M., Müller, R. D., 2006. Controls on Back-Arc Basin Formation. Geochemistry, Geophysics, Geosystems, 7(4): Q04016. https://doi.org/10.1029/2005GC001090
      Şengör, A. M. C., Natal'in, B. A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Reviews of Earth and Planetary Sciences, 24: 263-337. https://doi.org/10.1146/annurev.earth.24.1.263
      Şengör, A. M. C., Natal'in, B. A., Sunal, G., et al., 2018. The Tectonics of the Altaids: Crustal Growth during the Construction of the Continental Lithosphere of Central Asia Between ~750 and ~130 Ma Ago. Annual Review of Earth and Planetary Sciences, 46: 439-494. https://doi.org/10.1146/annurev-earth-060313-054826
      Şengör, A. M. C., Sunal, G., Natal'in, B. A., et al., 2022. The Altaids: A Review of Twenty-Five Years of Knowledge Accumulation. Earth-Science Reviews, 228: 104013. https://doi.org/10.1016/j.earscirev.2022.104013
      Shen, X. M., Zhang, H. X., Wang, Q., et al., 2011. Late Devonian-Early Permian A-Type Granites in the Southern Altay Range, Northwest China: Petrogenesis and Implications for Tectonic Setting of "A2-Type" Granites. Journal of Asian Earth Sciences, 42(5): 986-1007. https://doi.org/10.1016/j.jseaes.2010.10.004
      Shreve, R. L., Cloos, M., 1986. Dynamics of Sediment Subduction, Melange Formation, and Prism Accretion. Journal of Geophysical Research: Solid Earth, 91(B10): 10229-10245. https://doi.org/10.1029/JB091iB10p10229
      Sigloch, K., Mihalynuk, M. G., 2013. Intra-Oceanic Subduction Shaped the Assembly of Cordilleran North America. Nature, 496(7443): 50-56. https://doi.org/10.1038/nature12019
      Singer, B. S., Leeman, W. P., Thirlwall, M. F., et al., 1996. Does Fracture Zone Subduction Increase Sediment Flux and Mantle Melting in Subduction Zones? Trace Element Evidence from Aleutian Arc Basalt. In: Bebout, G. E., et al., eds., Subduction Top to Bottom. AGU, Washington, D.C. .
      Sisson, V. B., Hollister, L. S., Onstott, T. C., 1989. Petrologic and Age Constraints on the Origin of a Low- Pressure/High-Temperature Metamorphic Complex, Southern Alaska. Journal of Geophysical Research: Solid Earth, 94(B4): 4392-4410. https://doi.org/10.1029/JB094iB04p04392
      Song, D. F., Xiao, W. J., Han, C. M., et al., 2013a. Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U-Pb and Hf Isotopic Data of High-Grade Complexes. Precambrian Research, 227: 368-388. https://doi.org/10.1016/j.precamres.2012.06.011
      Song, D. F., Xiao, W. J., Han, C. M., et al., 2013b. Provenance of Metasedimentary Rocks from the Beishan Orogenic Collage, Southern Altaids: Constraints from Detrital Zircon U-Pb and Hf Isotopic Data. Gondwana Research, 24(3-4): 1127-1151. https://doi.org/10.1016/j.gr.2013.02.002
      Song, S. G., Niu, Y. L., Zhang, L. F., et al., 2009. Tectonic Evolution of Early Paleozoic HP Metamorphic Rocks in the North Qilian Mountains, NW China: New Perspectives. Journal of Asian Earth Sciences, 35(3-4): 334-353. https://doi.org/10.1016/j.jseaes.2008.11.005
      Spakman, W., Hall, R., 2010. Surface Deformation and Slab-Mantle Interaction during Banda Arc Subduction Rollback. Nature Geoscience, 3(8): 562-566. https://doi.org/10.1038/ngeo917
      Stern, C. R., 2011. Subduction Erosion: Rates, Mechanisms, and Its Role in Arc Magmatism and the Evolution of the Continental Crust and Mantle. Gondwana Research, 20(2-3): 284-308. https://doi.org/10.1016/j.gr.2011.03.006
      Stern, R. J., 2002. Subduction Zones. Reviews of Geophysics, 40(4): 1012. https://doi.org/10.1029/2001RG000108
      Stern, R. J., 2004. Subduction Initiation: Spontaneous and Induced. Earth and Planetary Science Letters, 226(3-4): 275-292. https://doi.org/10.1016/j.epsl.2004.08.007
      Stern, R. J., Bloomer, S. H., 1992. Subduction Zone Infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California Arcs. Geological Society of America Bulletin, 104(12): 1621-1636. https://doi.org/10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2 doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
      Strak, V., Schellart, W. P., 2021. Thermo-Mechanical Numerical Modeling of the South American Subduction Zone: A Multi-Parametric Investigation. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021527. https://doi.org/10.1029/2020JB021527
      Straub, S. M., Gómez-Tuena, A., Vannucchi, P., 2020. Subduction Erosion and Arc Volcanism. Nature Reviews Earth & Environment, 1(11): 574-589. https://doi.org/10.1038/s43017-020-0095-1
      Sun, W. D., 2019. The Magma Engine and the Driving Force of Plate Tectonics. Chinese Science Bulletin, 64(S2): 2988-3006 (in Chinese with English abstract).
      Sun, W. D., Ling, M. X., Yang, X. Y., et al., 2010. Ridge Subduction and Porphyry Copper-Gold Mineralization: an Overview. Science China Earth Sciences, 53(4): 475-484. https://doi.org/10.1007/s11430-010-0024-0
      Takahashi, N., Kodaira, S., Klemperer, S. L., et al., 2007. Crustal Structure and Evolution of the Mariana Intra-Oceanic Island Arc. Geology, 35: 203-206. https://doi.org/10.1130/G23212A.1
      Thorkelson, D. J., 1996. Subduction of Diverging Plates and the Principles of Slab Window Formation. Tectonophysics, 255(1-2): 47-63. https://doi.org/10.1016/0040-1951(95)00106-9
      Tilley, H. L., Moore, G. F., Yamashita, M., et al., 2021. Along-Strike Variations in Protothrust Zone Characteristics at the Nankai Trough Subduction Margin. Geosphere 17: 389-408. https://doi.org/10.1130/GES02305.1.
      Ulrich, M., Hémond, C., Nonnotte, P., et al., 2012. OIB/Seamount Recycling as a Possible Process for E-MORB Genesis. Geochemistry, Geophysics, Geosystems, 13(6): Q0AC19. https://doi.org/10.1029/2012GC004078
      van Hinsbergen, D. V., Lippert, P., Dupont-Nivet, G., et al., 2012. Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. Proceedings of the National Academy of Sciences, 109: 7659-7664. https://doi.org/10.1073/pnas.1117262109
      van Staal, C. R., 1994. Brunswick Subduction Complex in the Canadian Appalachians: Record of the Late Ordovician to Late Silurian Collision between Laurentia and the Gander Margin of Avalon. Tectonics, 13(4): 946-962. https://doi.org/10.1029/93TC03604
      van Summeren, J., Conrad, C. P., Lithgow-Bertelloni, C., 2012. The Importance of Slab Pull and a Global Asthenosphere to Plate Motions. Geochemistry, Geophysics, Geosystems, 13(2): Q0AK03. https://doi.org/10.1029/2011GC003873
      Vargas, C. A., Mann, P., 2013. Tearing and Breaking off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3): 2025-2046. https://doi.org/10.1785/0120120328
      Vignaroli, G., Faccenna, C., Jolivet, L., et al., 2008. Subduction Polarity Reversal at the Junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics, 450(1-4): 34-50. https://doi.org/10.1016/j.tecto.2007.12.012
      Von Huene, R., Lallemand, S., 1990. Tectonic Erosion along the Japan and Peru Convergent Margins. Geological Society of America Bulletin, 102(6): 704-720. https://doi.org/10.1130/0016-7606(1990)102<0704:TEATJA>2.3.CO;2 doi: 10.1130/0016-7606(1990)102<0704:TEATJA>2.3.CO;2
      Von Huene, R., Scholl, D. W., 1991. Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental Crust. Reviews of Geophysics, 29(3): 279-316. https://doi.org/10.1029/91RG00969
      Wan, B., Wu, F. Y., Chen, L., et al., 2019. Cyclical One-Way Continental Rupture-Drift in the Tethyan Evolution: Subduction-Driven Plate Tectonics. Science in China (Series D), 49(12): 2004-2017 (in Chinese).
      Wang, H., Xiao, W. J., Windley, B. F., et al., 2022. Diverse P-T-t Paths Reveal High-Grade Metamorphosed Forearc Complexes in NW China. Journal of Geophysical Research: Solid Earth, 127(6): e2022JB024309. https://doi.org/10.1029/2022JB024309
      Wang, J. P., Kusky, T. M., Wang, L., et al., 2015. A Neoarchean Subduction Polarity Reversal Event in the North China Craton. Lithos, 220-223: 133-146. https://doi.org/10.1016/j.lithos.2015.01.029
      Wells, M. L., Beyene, M. A., Spell, T. L., et al., 2005. The Pinto Shear Zone; a Laramide Synconvergent Extensional Shear Zone in the Mojave Desert Region of the Southwestern United States. Journal of Structural Geology, 27(9): 1697-1720. https://doi.org/10.1016/j.jsg.2005.03.005
      Whalen, J. B., McNicoll, V. J., van Staal, C. R., et al., 2006. Spatial, Temporal and Geochemical Characteristics of Silurian Collision-Zone Magmatism, Newfoundland Appalachians: An Example of a Rapidly Evolving Magmatic System Related to Slab Break-off. Lithos, 89(3-4): 377-404. https://doi.org/10.1016/j.lithos.2005.12.011
      Windley, B. F., Kusky, T. M., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980
      Windley, B. F., Xiao, W. J., 2018. Ridge Subduction and Slab Windows in the Central Asian Orogenic Belt: Tectonic Implications for the Evolution of an Accretionary Orogen. Gondwana Research, 61: 73-87. https://doi.org/10.1016/j.gr.2018.05.003
      Wu, F. Y., Wang, J. G., Liu, C. Z., et al., 2019. Intra-Oceanic Arc: Its Formation and Evolution. Acta Petrologica Sinica, 35(1): 1-15 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.01
      Wu, J. T. J., Wu, J., 2019. Izanagi-Pacific Ridge Subduction Revealed by a 56 to 46 Ma Magmatic Gap along the Northeast Asian Margin. Geology, 47(10): 953-957. https://doi.org/10.1130/G46778.1
      Xiao, W. J., Ao, S. J., Yang, L., et al., 2017. Anatomy of Composition and Nature of Plate Convergence: Insights for Alternative Thoughts for Terminal India-Eurasia Collision. Science China Earth Sciences, 60(6): 1015-1039. https://doi.org/10.1007/s11430-016-9043-3
      Xiao, W. J., Han, C. M., Liu, W., et al., 2014. How many Sutures in the Southern Central Asian Orogenic Belt: Insights from East Xinjiang-West Gansu (NW China)? Geoscience Frontiers, 5(4): 525-536. https://doi.org/10.1016/j.gsf.2014.04.002
      Xiao, W. J., Han, C. M., Yuan, C., et al., 2010. Transitions among Mariana-, Japan-, Cordillera- and Alaska-Type Arc Systems and Their Final Juxtapositions Leading to Accretionary and Collisional Orogenesis. Geological Society, London, Special Publications, 338(1): 35-53. https://doi.org/10.1144/SP338.3
      Xiao, W. J., Li, J. L., Song, D. F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract).
      Xiao, W. J., Santosh, M., 2014. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 25(4): 1429-1444. https://doi.org/10.1016/j.gr.2014.01.008
      Xiao, W. J., Windley, B. F., Han, C. M., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98: 1189-1217. https://doi.org/10.1007/s00531-008-0407-z
      Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
      Xiao, W. J., Windley, B., Hao, J., et al., 2002. Arc-Ophiolite Obduction in the Western Kunlun Range (China): Implications for the Palaeozoic Evolution of Central Asia. Journal of the Geological Society, 159(5): 517-528. https://doi.org/10.1144/0016-764901-093
      Xiao, W. J., Windley, B., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      Xiao, Y., Zhang, R. Q., Kuang, C. L., 2021. Mantle Transition Zone Structure Beneath the Alaska-Aleutian Subduction Zone and Its Surroundings. Chinese Journal of Geophysics, 64(3): 838-850 (in Chinese with English abstract).
      Xu, Y. G., Li, H. Y., Hong, L. B., et al., 2018. Generation of Cenozoic Intraplate Basalts in the Big Mantle Wedge under Eastern Asia. Science China Earth Sciences, 61(7): 869-886. https://doi.org/10.1007/s11430-017-9192-y
      Xu, Z. Q., Dilek, Y., Yang, J. S., et al., 2015. Crustal Structure of the Indus-Tsangpo Suture Zone and Its Ophiolites in Southern Tibet. Gondwana Research, 27(2): 507-524. https://doi.org/10.1016/j.gr.2014.08.001
      Yan, Z., Fu, C. L., Niu, M. L., et al., 2021. Recognition and Significance of Accretionary Prism in Orogenic Belts. Chinese Journal of Geology, 56(2): 430-448 (in Chinese with English abstract).
      Yang, G. X., 2022. Subduction Initiation Triggered by Collision: A Review Based on Examples and Models. Earth-Science Reviews, 232: 104129. https://doi.org/10.1016/j.earscirev.2022.104129
      Yang, G. X., Li, Y. J., Tong, L. L., et al., 2017. Geological Effects of Seamount Subduction in West Junggar: Insight from Geochemical Characteristics of Devonian-Carboniferous Volcanic Rocks. Earth Science Frontiers, 24(6): 60-67 (in Chinese with English abstract).
      Yang, G. X., Li, Y. J., Xiao, W. J., et al., 2015. OIB-Type Rocks within West Junggar Ophiolitic Mélanges: Evidence for the Accretion of Seamounts. Earth-Science Reviews, 150: 477-496. https://doi.org/10.1016/j.earscirev.2015.09.002
      Yang, G. X., Si, G. H., Tong, L. L., et al., 2022. The Effect of Seamount Chain Subduction and Accretion. Geological Journal, 57(7): 2712-2734. https://doi.org/10.1002/gj.4435
      Yao, J. L., Cawood, P. A., Zhao, G. C., et al., 2021. Mariana-Type Ophiolites Constrain the Establishment of Modern Plate Tectonic Regime during Gondwana Assembly. Nature Communications, 12: 4189. https://doi.org/10.1038/s41467-021-24422-z
      Yin, A., Manning, C. E., Lovera, O., et al., 2007. Early Paleozoic Tectonic and Thermomechanical Evolution of Ultrahigh-Pressure (UHP) Metamorphic Rocks in the Northern Tibetan Plateau, Northwest China. International Geology Review, 49(8): 681-716. https://doi.org/10.2747/0020-6814.49.8.681
      Yin, J. Y., Chen, W., Xiao, W. J., et al., 2017. Late Silurian-Early Devonian Adakitic Granodiorite, A-Type and I-Type Granites in NW Junggar, NW China: Partial Melting of Mafic Lower Crust and Implications for Slab Roll-back. Gondwana Research, 43: 55-73. https://doi.org/10.1016/j.gr.2015.06.016
      Yuan, J., Deng, C. L., Yang, Z. Y., et al., 2022. Triple-Stage India-Asia Collision Involving Arc-Continent Collision and Subsequent Two-Stage Continent-Continent Collision. Global and Planetary Change, 212: 103821. https://doi.org/10.1016/j.gloplacha.2022.103821
      Žák, J., Svojtka, M., Hajná, J., et al., 2020. Detrital Zircon Geochronology and Processes in Accretionary Wedges. Earth-Science Reviews, 207: 103214. https://doi.org/10.1016/j.earscirev.2020.103214
      Zhang, J. E., Xiao, W. J., Luo, J., et al., 2018a. Collision of the Tacheng Block with the Mayile-Barleik-Tangbale Accretionary Complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic Architecture of the Western Altaids. Journal of Asian Earth Sciences, 159: 259-278. https://doi.org/10.1016/j.jseaes.2017.03.023
      Zhang, J. E., Xiao, W. J., Windley, B. F., et al., 2018b. Multiple Alternating Forearc- and Backarc-Ward Migration of Magmatism in the Indo-Myanmar Orogenic Belt since the Jurassic: Documentation of the Orogenic Architecture of Eastern Neotethys in SE Asia. Earth-Science Reviews, 185: 704-731. https://doi.org/10.1016/j.earscirev.2018.07.009
      Zhang, J. X., 2020. The Study of Subduction Channels: Progress, Controversies, and Challenges. Science China Earth Sciences, 63(12): 1831-1851. https://doi.org/10.1007/s11430-019-9626-5
      Zhao, D. P., Christensen, D., Pulpan, H., 1995. Tomographic Imaging of the Alaska Subduction Zone. Journal of Geophysical Research: Solid Earth, 100(B4): 6487-6504. https://doi.org/10.1029/95JB00046
      Zhao, D. P., Maruyama, S., Omori, S., 2007. Mantle Dynamics of Western Pacific and East Asia: Insight from Seismic Tomography and Mineral Physics. Gondwana Research, 11(1-2): 120-131. https://doi.org/10.1016/j.gr.2006.06.006
      Zhao, D. P., Tian, Y., Lei, J. S., et al., 2009. Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206. https://doi.org/10.1016/j.pepi.2008.11.009
      Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
      Zhu, R. X., Zhao, G. C., Xiao, W. J., et al., 2021. Origin, Accretion, and Reworking of Continents. Reviews of Geophysics, 59(3): e2019RG000689. https://doi.org/10.1029/2019RG000689
      边千韬, 罗小全, 陈海泓, 等, 1999. 阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义. 地质科学, 34(4): 420-426. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904002.htm
      陈艺超, 张继恩, 田忠华, 等, 2021b. 造山带中缝合面结构特征与构造意义. 岩石学报, 37(8): 2324-2338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202108005.htm
      陈艺超, 张继恩, 侯泉林, 等, 2021a. 增生弧基本特征与地质意义. 地质科学, 56(2): 615-634. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202102012.htm
      侯增谦, 赵志丹, 高永丰, 等, 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22(4): 761-774. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604001.htm
      李继亮, 郝杰, 柴育成, 等, 1993. 赣南混杂带与增生弧联合体: 图尔基型碰撞造山带的缝合带. 见: 李继亮编. 东南大陆岩石圈结构与地质演化. 北京: 冶金工业出版社.
      李三忠, 王光增, 索艳慧, 等, 2019. 板块驱动力: 问题本源与本质. 大地构造与成矿学, 43(4): 605-643. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201904002.htm
      李廷栋, 肖庆辉, 潘桂棠, 等, 2019. 关于发展洋板块地质学的思考. 地球科学, 44(5): 1441-1451. doi: 10.3799/dqkx.2019.970
      孙卫东, 2019. "岩浆引擎"与板块运动驱动力. 科学通报, 64(S2): 2988-3006. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z2005.htm
      万博, 吴福元, 陈凌, 等, 2019. 重力驱动的特提斯单向裂解-聚合动力学. 中国科学(D辑), 49(12): 2004-2017.
      吴福元, 王建刚, 刘传周, 等, 2019. 大洋岛弧的前世今生. 岩石学报, 35(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901002.htm
      肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979
      肖勇, 张瑞青, 况春利, 2021. 阿留申-阿拉斯加俯冲带及周边地区地幔过渡带结构研究. 地球物理学报, 64(3): 838-850. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202103008.htm
      闫臻, 付长垒, 牛漫兰, 等, 2021. 造山带中增生楔识别与地质意义. 地质科学, 56(2): 430-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202102004.htm
      杨高学, 李永军, 佟丽莉, 等, 2017. 西准噶尔海山俯冲的地质效应: 来自泥盆纪-石炭纪火山岩地球化学证据. 地学前缘, 24(6): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706007.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(22)

      Article views (4900) PDF downloads(950) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return