• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Xu Zhenping, Yang Gengxiong, Luo Haoyu, Yin Hongwei, Wu Shaojun, Wang Wei, Zhao Fengquan, Xu Wenqiao, 2024. The Influence Lithologic Differences at Different Depths on the Segmentation between the Eastern and the Western zones of Kuqa Depression. Earth Science, 49(8): 3029-3042. doi: 10.3799/dqkx.2022.391
    Citation: Xu Zhenping, Yang Gengxiong, Luo Haoyu, Yin Hongwei, Wu Shaojun, Wang Wei, Zhao Fengquan, Xu Wenqiao, 2024. The Influence Lithologic Differences at Different Depths on the Segmentation between the Eastern and the Western zones of Kuqa Depression. Earth Science, 49(8): 3029-3042. doi: 10.3799/dqkx.2022.391

    The Influence Lithologic Differences at Different Depths on the Segmentation between the Eastern and the Western zones of Kuqa Depression

    doi: 10.3799/dqkx.2022.391
    • Received Date: 2022-12-03
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • The western and eastern zones of the Kuqa Depression show clear contrasts in geomorphology, structural belt width, and structural styles.In this study, we use physical analog modeling to explain the structural differences between the eastern and western zones of the Qiongdongnan Basin with the main variables being the strength of the gypsum rocks and basement. The model results show that the differences between the rheological strength of silicone and the basement have a great influence on the kinematic characteristics of the evolution process, and the structural styles are also different in different strength zones. By comparing the structural characteristics of Kuqa Depression with the structural pattern developed in analog models, it is considered that the differences in the viscosity of the gypsum-salt rocks and Paleozoic basement strength between the eastern and western zones of Kuqa Depression are the important factors for the segmentation of Kuqa Depression. The viscosity of gypsum rock layer has a strong controlling on the structure style above the gypsum-salt rocks, which affects the propagation range and structure styles.The structural styles under the gypsum-salt rocks closely related to the basement strength.The basement with weak strength inhibits the propagation of the structure under the gypsum-salt rocks. Thus, both the structural styles above and under the gypsum-salt rocks of Kuqa depression show the segmentations.

       

    • loading
    • Cotton, J. T., Koyi, H. A., 2000. Modeling of Thrust Fronts above Ductile and Frictional Detachments: Application to Structures in the Salt Range and Potwar Plateau, Pakistan. Geological Society of America Bulletin, 112(3): 351-363. https://doi.org/10.1130/0016-7606(2000)112<351:motfad>2.0.co;2 doi: 10.1130/0016-7606(2000)112<351:motfad>2.0.co;2
      Davis, D. M., Engelder, T., 1985. The Role of Salt in Fold-and-Thrust Belts. Tectonophysics, 119(1/2/3/4): 67-88. https://doi.org/10.1016/0040-1951(85)90033-2
      Davy, P., Cobbold, P. R., 1991. Experiments on Shortening of a 4-Layer Model of the Continental Lithosphere. Tectonophysics, 188(1/2): 1-25. https://doi.org/10.1016/0040-1951(91)90311-f
      Guan, S. W., Chen, Z. X., Li, B. L., et al., 2010. Discussions on the Character and Interpretation Model of Kelasu Deep Structures in the Kuqa Area. Petroleum Exploration and Development, 37(5): 531-536(in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60053-5
      He, D. F., Zhou, X. Y., Yang, H. J., et al., 2009. Geological Structure and Its Controls on Giant Oil and Gas Fields in Kuqa Depression, Tarim Basin: A Clue from New Shot Seismic Data. Geotectonica et Metallogenia, 33(1): 19-32(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.003
      Higgins, S., Davies, R. J., Clarke, B., 2007. Antithetic Fault Linkages in a Deep Water Fold and Thrust Belt. Journal of Structural Geology, 29(12): 1900-1914. https://doi.org/10.1016/j.jsg.2007.09.004
      Hubbert, M. K., 1937. Theory of Scale Models as Applied to the Study of Geologic Structures. Geological Society of America Bulletin, 48(10): 1459-1520. https://doi.org/10.1130/gsab-48-1459
      Li, J. H., Zhang, Y., Wang, H. H., et al., 2020. Three-Dimensional Discrete Element Numerical Simulation of Paleogene Salt Structures in the Western Kuqa Foreland Thrust Belt. Petroleum Exploration and Development, 47(1): 68-79(in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60006-4
      Li, S. Q., Wang, X., Suppe, J., 2012. Compressional Salt Tectonics and Synkinematic Strata of the Western Kuqa Foreland Basin, Southern TianShan, China. Basin Research, 24(4): 475-497. https://doi.org/10.1111/j.1365-2117.2011.00531.x
      Li, Y., Qi, J. 2013. Structural Segmentation and Mechanism in Dabei-Keshen area of Kelasu Structural Belt, Kuqa Depression. Chinese Journal of Geology, 48(4): 1177-1186(in Chinese with English abstract).
      Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419
      Mukherjee, S., Talbot, C. J., Koyi, H. A., 2010. Viscosity Estimates of Salt in the Hormuz and Namakdan Salt Diapirs, Persian Gulf. Geological Magazine, 147(4): 497-507. https://doi.org/10.1017/s001675680999077x
      Neng, Y., Xie, H. W., Yin, H. W., et al., 2018. Effect of Basement Structure and Salt Tectonics on Deformation Styles along Strike: An Example from the Kuqa Fold-thrust Belt, West China. Tectonophysics, 730(5): 114-131. https://doi.org/10.1016/j.tecto.2018.02.006
      Qi, J. F., Lei, G. L., & Li, M. G., et al., 2009. Analysis of Structure Model and Formation Mechanism of Kelasu Structure Zone, Kuqa Depression. Geotectonica et Metallogenia, 33(1): 49-56(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.007
      Reiter, K., Kukowski, N., Ratschbacher, L., 2011. The Interaction of Two Indenters in Analogue Experiments and Implications for Curved Fold-and-Thrust Belts. Earth and Planetary Science Letters, 302(1/2): 132-146. https://doi.org/10.1016/j.epsl.2010.12.002
      Schrank, C. E., Boutelier, D. A., Cruden, A. R., 2008. The Analogue Shear Zone: From Rheology to Associated Geometry. Journal of Structural Geology, 30(2): 177-193. https://doi.org/10.1016/j.jsg.2007.11.002
      Shen, L., Jia, D., Yin, H. W., et al., 2012. Analogue Modeling of Fold-and-Thrust Structures Based on Particle Image Velocimetry (PIV). Geological Review, 58(3): 471-480(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.03.008
      Tang, L. J., Li, J. C., Yu, Y. X., et al., 2006. Differential Salt Tectonic Deformation and Segmentation of the Kuqa Foreland Fold-Thrust Belt, Tarim Basin, Northwest China. Acta Geologica Sinica, (3): 313-320(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.03.001
      Tang, P. C., Rao, G., Li, S. Q. et al., 2015. The Impact of Salt Layer Thickness on the Structural Characteristics and Evolution of Detachment Folds in the Leading Edge of Kuqa Fold and Thrust Belt. Earth Science Frontiers, 22(1), 312-327(in Chinese with English abstract).
      Teng, X. Q., Yong, L., Yang, P., et al., 2017. Differential Structural Deformation and Its Control Factors in the Eastern Segment of Kuqa Depression. Petroleum Geology and Recovery Efficienc, 24(2): 15-21(in Chinese with English abstract).
      Wang, C. Y., Cheng, X. G., Chen, H. L., et al., 2016. The Effect of Foreland Palaeo-Uplift on Deformation Mechanism in the Wupoer Fold-and-Thrust Belt, NE Pamir: Constraints from Analogue Modelling. Journal of Geodynamics, 100(2): 115-129. https://doi.org/10.1016/j.jog.2016.03.001
      Wang, F, Deng, X., Zheng, M., et al., 2022. Sedimentary-Geochemical Characteristics and Potash-Prospecting Potential of Gypsum-Salt Layer in Western Kuqa Depression. Earth Science, 47 (1): 56-71 (in Chinese with English abstract).
      Wang, X., Jia, C. Z., Yang, S. F., et al., 2002. The Deformation Time of Kuqa Fold-and-Thrust Belt in the Southern Tianshan. Acta Geologica Sinica, (1): 55-63(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2002.01.008
      Wang, X., Wang, Z. M., Xie, H. W., et al., 2010. Cenozoic Salt Tectonics and Physical Models in the Kuqa Depression of Tarim Basin, China. Sci. Sin. Terrae, 40: 1655-1668 (in Chinese with English abstract). doi: 10.1360/zd2010-40-12-1655
      Wu, L., Jia, Y., Wang, G., et al., 2022. Response of Uranium Mineralization in Kuqa Depression Driven by Basin-Mountain Coupling Mechanism. Earth Science, 47(9): 3174-3191 (in Chinese with English abstract).
      Wu, Z. Y., Yin, H. W., Wang, X., et al., 2014. Characteristics and Deformation Mechanism of Salt-Related Structures in the Western Kuqa Depression, Tarim Basin: Insights from Scaled Sandbox Modeling. Tectonophysics, 612-613(8): 81-96. https://doi.org/10.1016/j.tecto. 2013.11.040 doi: 10.1016/j.tecto.2013.11.040
      Weijermars, R., Jackson, M. P. A., Vendeville, B., 1993. Rheological and Tectonic Modeling of Salt Provinces. Tectonophysics, 217(1/2): 143-174. https://doi.org/10.1016/0040-1951(93)90208-2
      Wolf, H., König, D., Triantafyllidis, T., 2003. Experimental Investigation of Shear Band Patterns in Granular Material. Journal of Structural Geology, 25(8): 1229-1240. https://doi.org/10.1016/s0191-8141(2)00163-3
      Xu, W. Q., Wang, W., Yin, H. W., et al., 2020. Numerical Simulation of Different Subsalt Structural Features and Their Evolution in the Eastern and Western Segments of the Kuqa Depression. Acta Geologica Sinica, 94(6): 1740-1751(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.06.007
      Yang, K. J., 2017. Differential Structural Deformations andControlling Factors of Salt Tectonic in the Middle Segment of the Kuqa Depression(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Yang, K. J, Qi, J. F., Ma, B. J., et al., 2018. Differential Tectonic Deformation of Subsalt and Suprasalt Strata in Kuqa Depression and Their Controlling Factors. Geotectonica et Metallogenia. 42(2): 211-224(in Chinese with English abstract).
      Yin, H., Wang, Z., Wang, X., et al., 2011. Characteristics and Mechanics of Cenozoic Salt-Related Structures in Kuqa Foreland Basins: Insights from Physical Modeling and Discussion. Geological Journal of China Universities, 42(2): 211-224(in Chinese with English abstract).
      Yin, A., Nie, S., Craig, P., et al., 1998. Late Cenozoic Tectonic Evolution of the Southern Chinese Tian Shan. Tectonics, 17(1): 1-27. https://doi.org/10.1029/97tc03140
      Yu, Y. X., Tang, L. J., Yang, W. J., et al., 2007. Structural Segmentation of Salt Structures in the Frontal Ranges of the Kuqa Foreland Fold and Thrust Belt, Northern Tarim Basin. Acta Geologica Sinica, 81(2): 166-173(in Chinese with English abstract).
      Yu, Y. X., Tang, L. J., Yin, J. G., et al., 2008. Analysis on Kinematic Characteristics of Salt Structures in KuqaDepression by Using Balanced Section Technology. Acta Petrolei Sinica, 29(3): 378-382(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2008.03.012
      Yu, Y. X., Tang, L. J., Yang, W. J., et al., 2008. Thick‐skinned Contractional Salt Structures in the Kuqa Depression, the Northern Tarim Basin: Constraints from Physical Experiments. Acta Geologica Sinica-English Edition, 82(2): 327-333. https://doi.org/10.1111/j.1755-6724.2008.tb00582.x
      Yu, Y. X., Tang, L. J., Yang, W. J., et al., 2014. Salt Structures and Hydrocarbon Accumulations in the Tarim Basin, Northwest China. AAPG Bulletin, 98(1): 135-159. https://doi.org/10.1306/05301311156
      Zhao, S. J., Zhao, X. K., Yang, S. C., 2005. Similar Analysis of Geological Structure Physical Model. Northwestern Geology, 295(1): 1-20(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2005.01.001
      Zhou, Y., Li, Y., Li, J. B., et al., 2015. Sandbox Modeling of Fold and Thrust Belt Based on Particle Image Velocimetry (PIV). Geoscience, 29(4): 755-764(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2015.04.005
      管树巍, 陈竹新, 李本亮, 等, 2010. 再论库车克拉苏深部构造的性质与解释模型. 石油勘探与开发, 37: 531-536. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201005003.htm
      何登发, 周新源, 杨海军, 等, 2009. 库车坳陷的地质结构及其对大油气田的控制作用. 大地构造与成矿学, 33(1): 19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901004.htm
      李江海, 章雨, 王洪浩, 等, 2020. 库车前陆冲断带西部古近系盐构造三维离散元数值模拟. 石油勘探与开发, 47(1): 65-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001007.htm
      李艳友, 漆家福, 2013. 库车坳陷克拉苏构造带大北-克深区段差异变形特征及其成因分析. 地质科学, 48(4): 1177-1186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201304015.htm
      漆家福, 雷刚林, 李明刚, 等, 2009. 库车坳陷克拉苏构造带的结构模型及其形成机制. 大地构造与成矿学, 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901008.htm
      沈礼, 贾东, 尹宏伟, 等, 2012. 基于粒子成像测速(PIV)技术的褶皱冲断构造物理模拟. 地质论评, 58(3): 471-480. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201203009.htm
      汤良杰, 李京昌, 余一欣, 等, 2006. 库车前陆褶皱-冲断带盐构造差异变形和分段性特征探讨. 地质学报, (3): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603001.htm
      唐鹏程, 饶刚, 李世琴, 等, 2015. 库车褶皱-冲断带前缘盐层厚度对滑脱褶皱构造特征及演化的影响. 地学前缘, 22(1): 312-327. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501030.htm
      滕学清, 李勇, 杨沛, 等, 2017. 库车坳陷东段差异构造变形特征及控制因素. 油气地质与采收率, 24(2): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201702003.htm
      王凡, 邓小林, 郑绵平, 等, 2022. 新疆库车坳陷西段膏盐层沉积、地球化学特征及找钾方向. 地球科学, 47(1): 56-71. doi: 10.3799/dqkx.2021.245
      汪新, 贾承造, 杨树锋, 等, 2002. 南天山库车冲断褶皱带构造变形时间——以库车河地区为例. 地质学报, (1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200201010.htm
      汪新, 王招明, 谢会文, 等, 2010. 塔里木库车坳陷新生代盐构造解析及其变形模拟. 中国科学: 地球科学, 40(12): 1655-1668. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201012004.htm
      吴立群, 焦养泉, 王国荣, 等, 2022. 盆山耦合机制驱动下的库车坳陷铀成矿作用响应. 地球科学, 47(9): 3174-3191. doi: 10.3799/dqkx.2022.100
      徐雯峤, 汪伟, 尹宏伟, 等, 2020. 库车坳陷东西段盐下构造变形差异演化数值模拟分析. 地质学报, 94(6): 1740-1751. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202006007.htm
      杨克基, 2017. 库车坳陷中段盐构造差异变形及其控制因素研究(博士毕业论文). 北京: 中国石油大学(北京).
      杨克基, 漆家福, 马宝军, 等, 2018. 库车坳陷克拉苏构造带盐上和盐下构造变形差异及其控制因素分析. 大地构造与成矿学, 42(2): 211-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201802002.htm
      尹宏伟, 王哲, 汪新等, 2011. 库车前陆盆地新生代盐构造特征及形成机制: 物理模拟和讨论. 高校地质学报, 17(2): 308-317. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201801007.htm
      余一欣, 汤良杰, 杨文静, 等, 2007. 库车前陆褶皱-冲断带前缘盐构造分段差异变形特征. 地质学报, 166-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702004.htm
      余一欣, 汤良杰, 殷进垠, 等, 2008. 应用平衡剖面技术分析库车坳陷盐构造运动学特征. 石油学报, (3): 378-382. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200803013.htm
      赵仕俊, 赵锡奎, 杨少春, 2005. 地质构造物理模拟实验模型的相似分析. 西北地质, (4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200504003.htm
      周游, 李勇, 李敬波, 等, 2015. 基于粒子成像测速(PIV)技术的褶皱冲断带砂箱构造物理模拟研究. 现代地质, 29(4): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201504004.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (437) PDF downloads(49) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return