Citation: | Deng Mingdong, Ju Nengpan, Wu Tianwei, Wen Yan, Xie Mingli, Zhao Weihua, He Jiayang, 2024. Evaluation of Susceptibility under Different Landslide Sample Points and Polygonal Expression Modes. Earth Science, 49(5): 1565-1583. doi: 10.3799/dqkx.2022.393 |
Abraham, M. T., Satyam, N., Lokesh, R., et al., 2021. Factors Affecting Landslide Susceptibility Mapping: Assessing the Influence of Different Machine Learning Approaches, Sampling Strategies and Data Splitting. Land, 10(9): 989. https://doi.org/10.3390/land10090989
|
Ali, R., Kuriqi, A., Kisi, O., 2020. Human-Environment Natural Disasters Interconnection in China: A Review. Climate, 8(4): 48. https://doi.org/10.3390/cli8040048
|
Bayat, M., Ghorbanpour, M., Zare, R., et al., 2019. Application of Artificial Neural Networks for Predicting Tree Survival and Mortality in the Hyrcanian Forest of Iran. Computers and Electronics in Agriculture, 164: 104929. https://doi.org/10.1016/j.compag.2019.104929
|
Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20(3): 273-297. https://doi.org/10.1007/BF00994018
|
Hu, T., Fan, X., Wang, S., et al., 2020. Landslide Susceptibility Evaluation of Sinan County Using Logistics Regression Model and 3S Technology. Bulletin of Geological Science and Technology, 39(2): 113-121 (in Chinese with English abstract).
|
Huang, F. M., Cao, Y., Fan, X. M., et al., 2021. Influence of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S2): 3227-3240 (in Chinese with English abstract).
|
Huang, F. M., Hu, S. Y., Yan, X. Y., et al., 2022. Landslide Susceptibility Prediction and Identification of Its Main Environmental Factors Based on Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 79-90 (in Chinese with English abstract).
|
Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract).
|
Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract).
|
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
|
Liu, F. Z., Wang, L., Xiao, D. S., et al., 2021. Evaluation of Landslide Susceptibility in Ningnan County Based on Fuzzy Comprehensive Evaluation. Journal of Natural Disasters, 30(5): 237-246 (in Chinese with English abstract).
|
Mao, Y. K., 2020. Stability Evaluation of Landslide Based on Machine Learning and System Development (Dissertation). University of Electronic Science and Technology of China, Chengdu (in Chinese with English abstract).
|
Pardeshi, S. D., Autade, S. E., Pardeshi, S. S., 2013. Landslide Hazard Assessment: Recent Trends and Techniques. Springer Plus, 2(1): 523. https://doi.org/10.1186/2193-1801-2-523
|
Pourghasemi, H. R., Kornejady, A., Kerle, N., et al., 2020. Investigating the Effects of Different Landslide Positioning Techniques, Landslide Partitioning Approaches, and Presence-Absence Balances on Landslide Susceptibility Mapping. CATENA, 187: 104364. https://doi.org/10.1016/j.catena.2019.104364
|
Sahin, E. K., Colkesen, I., Kavzoglu, T., 2020. A Comparative Assessment of Canonical Correlation Forest, Random Forest, Rotation Forest and Logistic Regression Methods for Landslide Susceptibility Mapping. Geocarto International, 35(4): 341-363. https://doi.org/10.1080/10106049.2018.1516248
|
Süzen, M. L., Doyuran, V., 2004. Data Driven Bivariate Landslide Susceptibility Assessment Using Geographical Information Systems: A Method and Application to Asarsuyu Catchment, Turkey. Engineering Geology, 71(3/4): 303-321. https://doi.org/10.1016/S0013-7952(03)00143-1
|
Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract).
|
Xie, P., Wen, H. J., Ma, C. C., et al., 2018. Application and Comparison of Logistic Regression Model and Neural Network Model in Earthquake-Induced Landslides Susceptibility Mapping at Mountainous Region, China. Geomatics, Natural Hazards and Risk, 9(1): 501-523. https://doi.org/10.1080/19475705.2018.1451399
|
Xu, Q., Lu, H. Y., Li, W. L., et al., 2022. Types of Potential Landslide and Corresponding Identification Technologies. Geomatics and Information Science of Wuhan University, 47(3): 377-387 (in Chinese with English abstract).
|
Yilmaz, I., 2010. The Effect of the Sampling Strategies on the Landslide Susceptibility Mapping by Conditional Probability and Artificial Neural Networks. Environmental Earth Sciences, 60(3): 505-519. https://doi.org/10.1007/s12665-009-0191-5
|
Zhang, Y., Wu, W. C., Qin, Y. Z., et al., 2020. Mapping Landslide Hazard Risk Using Random Forest Algorithm in Guixi, Jiangxi, China. ISPRS International Journal of Geo-Information, 9(11): 695. https://doi.org/10.3390/ijgi9110695
|
Zhou, C., Yin, K. L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876 (in Chinese with English abstract).
|
Zhou, X. T., Wu, W. C., Lin, Z. Y., et al., 2021. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China. International Journal of Environmental Research and Public Health, 18(11): 5906. https://doi.org/10.3390/ijerph18115906
|
Zhu, A. X., Miao, Y. M., Yang, L., et al., 2018. Comparison of the Presence-Only Method and Presence-Absence Method in Landslide Susceptibility Mapping. CATENA, 171: 222-233. https://doi.org/10.1016/j.catena.2018.07.012
|
胡涛, 樊鑫, 王硕, 等, 2020. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价. 地质科技通报, 39(2): 113-121. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202002013.htm
|
黄发明, 曹昱, 范宣梅, 等, 2021. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报, 40(S2): 3227-3240. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2023.htm
|
黄发明, 胡松雁, 闫学涯, 等, 2022. 基于机器学习的滑坡易发性预测建模及其主控因子识别. 地质科技通报, 41(2): 79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202008.htm
|
黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
|
黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
|
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
|
刘福臻, 王灵, 肖东升, 等, 2021. 基于模糊综合评判法的宁南县滑坡易发性评价. 自然灾害学报, 30(5): 237-246. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202105023.htm
|
毛宇昆, 2020. 基于机器学习的滑坡稳定性评价及系统研发(硕士学位论文). 成都: 电子科技大学.
|
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
|
许强, 陆会燕, 李为乐, 等, 2022. 滑坡隐患类型与对应识别方法. 武汉大学学报(信息科学版), 47(3): 377-387. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202203007.htm
|
周超, 殷坤龙, 曹颖, 等, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071
|