• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 5
    May  2024
    Turn off MathJax
    Article Contents
    Wang Yue, Cao Ying, Xu Fangdang, Zhou Chao, Yu Lanbing, Wu Lixing, Wang Yang, Yin Kunlong, 2024. Reservoir Landslide Susceptibility Prediction Considering Non-Landslide Sampling and Ensemble Machine Learning Methods. Earth Science, 49(5): 1619-1635. doi: 10.3799/dqkx.2022.407
    Citation: Wang Yue, Cao Ying, Xu Fangdang, Zhou Chao, Yu Lanbing, Wu Lixing, Wang Yang, Yin Kunlong, 2024. Reservoir Landslide Susceptibility Prediction Considering Non-Landslide Sampling and Ensemble Machine Learning Methods. Earth Science, 49(5): 1619-1635. doi: 10.3799/dqkx.2022.407

    Reservoir Landslide Susceptibility Prediction Considering Non-Landslide Sampling and Ensemble Machine Learning Methods

    doi: 10.3799/dqkx.2022.407
    • Received Date: 2022-11-08
      Available Online: 2024-06-04
    • Publish Date: 2024-05-25
    • Landslide susceptibility evaluation is important for its early warning and forecasting and risk management.To address the problems of a random selection of non-landslide samples and low accuracy of individual classifiers in modeling by machine learning techniques, a coupled multi-model regional landslide susceptibility modeling framework is proposed.Taking the Zigui-Badong section of the Three Gorges reservoir area as an example, 12 factors such as elevation and slope were selected to construct an evaluation index system, and the information quantity method was applied to quantify the influence degree of each factor on landslide spatial development. 70% of the landslides were randomly selected as training samples and the remaining 30% as validation samples; the Logistic Regression model (LR) was applied to produce an initial susceptibility zoning map of the study area and to determine the constraint range for random sampling of non-landslides. Subsequently, a single Classification and Regression Tree (LR-CART and No-CART) and combined Classification and Regression Tree-Bagging model (LR-CART-Bagging and No-CART-Bagging) were applied to model landslide susceptibility using randomly selected non-landslide samples under the constrained and unconstrained conditions of LR model, respectively, and multiple metrics were applied for accuracy assessment.The results show that elevation and water system are the main controlling factors for landslide development; the accuracy of the LR-CART-Bagging model is 0.973, higher than 0.889 of the LR-CART model; compared with No-CART and No-CART-Bagging models, the accuracy of LR-CART and LR-CART-Bagging models is improved by 0.057 and 0.047, respectively.LR model can effectively constrain the selection range of non-landslide samples and improve the quality of sample selection; the CART-Bagging model integrates the advantages of machine learning and ensemble learning with better prediction performance, and the proposed LR-CART-Bagging model is an accurate and reliable method for landslide susceptibility modeling.

       

    • loading
    • Breiman, L., 1996. Stacked Regressions. Machine Language, 24(1): 49-64. https://doi.org/10.1023/A:1018046112532
      Bui, D. T., Tsangaratos, P., Nguyen, V. T., et al., 2020. Comparing the Prediction Performance of a Deep Learning Neural Network Model with Conventional Machine Learning Models in Landslide Susceptibility Assessment. CATENA, 188: 104426. https://doi.org/10.1016/j.catena.2019.104426
      Chen, T., Zhong, Z. Y., Niu, R. Q., et al., 2020. Mapping Landslide Susceptibility Based on Deep Belief Network. Geomatics and Information Science of Wuhan University, 45(11): 1809-1817 (in Chinese with English abstract).
      Chen, W., Pourghasemi, H. R., Kornejady, A., et al., 2017. Landslide Spatial Modeling: Introducing New Ensembles of ANN, MaxEnt, and SVM Machine Learning Techniques. Geoderma, 305: 314-327. https://doi.org/10.1016/j.geoderma.2017.06.020
      Dai, F. C., Lee, C. F., Li, J., et al., 2001. Assessment of Landslide Susceptibility on the Natural Terrain of Lantau Island, Hongkong. Environmental Geology, 40(3): 381-391. https://doi.org/10.1007/s002540000163
      Dong, X. B., Yu, Z. W., Cao, W. M., et al., 2020. A Survey on Ensemble Learning. Frontiers of Computer Science, 14(2): 241-258. https://doi.org/10.1007/s11704-019-8208-z
      Fang, Z. C., Wang, Y., Niu, R. Q., et al., 2021. Landslide Susceptibility Prediction Based on Positive Unlabeled Learning Coupled with Adaptive Sampling. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 11581-11592. https://doi.org/10.1109/JSTARS.2021.3125741
      Guo, Z. Z., Yin, K. L., Fu, S., et al., 2019a. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312 (in Chinese with English abstract).
      Guo, Z. Z., Yin, K. L., Huang, F. M., et al., 2019b. Evaluation of Landslide Susceptibility Based on Landslide Classification and Weighted Frequency Ratio Model. Chinese Journal of Rock Mechanics and Engineering, 38(2): 287-300 (in Chinese with English abstract).
      Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
      Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract).
      Jacobs, L., Kervyn, M., Reichenbach, P., et al., 2020. Regional Susceptibility Assessments with Heterogeneous Landslide Information: Slope Unit-vs. Pixel-Based Approach. Geomorphology, 356: 107084. https://doi.org10.1016/j.geomorph.2020.107084
      Kavzoglu, T., Sahin, E. K., Colkesen, I., 2014. Landslide Susceptibility Mapping Using GIS-Based Multi-Criteria Decision Analysis, Support Vector Machines, and Logistic Regression. Landslides, 11(3): 425-439. https://doi.org/10.1007/s10346-013-0391-7
      Kayastha, P., Dhital, M. R., De Smedt, F., 2013. Application of the Analytical Hierarchy Process (AHP) for Landslide Susceptibility Mapping: A Case Study from the Tinau Watershed, West Nepal. Computers & Geosciences, 52: 398-408. https://doi.org/10.1016/j.cageo.2012.11.003
      Kornejady, A., Ownegh, M., Bahremand, A., 2017. Landslide Susceptibility Assessment Using Maximum Entropy Model with Two Different Data Sampling Methods. CATENA, 152: 144-162. https://doi.org/10.1016/j.catena.2017.01.010
      Lewis, R. J., 2000. An Introduction to Classification and Regression Tree (CART) Analysis. Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California, 14.
      Li, S. L., Xu, Q., Tang, M. G., et al., 2020. Study on Spatial Distribution and Key Influencing Factors of Landslides in Three Gorges Reservoir Area. Earth Science, 45(1): 341-354 (in Chinese with English abstract).
      Lin, R. F., Liu, J. P., Xu, S. H., et al., 2020. Evaluation Method of Landslide Susceptibility Based on Random Forest Weighted Information. Science of Surveying and Mapping, 45(12): 131-138 (in Chinese with English abstract).
      Liu, L., Yin, K. L., Xu, Y., et al., 2018. Evaluation of Regional Landslide Stability Considering Rainfall and Variation of Water Level of Reservoir. Chinese Journal of Rock Mechanics and Engineering, 37(2): 403-414 (in Chinese with English abstract).
      Liu, S. H., Yin, K. L., Zhou, C., et al., 2021. Susceptibility Assessment for Landslide Initiated along Power Transmission Lines. Remote Sensing, 13(24): 5068. https://doi.org/10.3390/rs13245068
      Peng, L., 2013. Landslide Risk Assessment in the Three Gorges Reservoir (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Pham, B. T., Tien Bui, D., Prakash, I., et al., 2017. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. CATENA, 149: 52-63. https://doi.org/10.1016/j.catena.2016.09.007
      Sabokbar, H. F., Roodposhti, M. S., Tazik, E., 2014. Landslide Susceptibility Mapping Using Geographically-Weighted Principal Component Analysis. Geomorphology, 226: 15-24. https://doi.org/10.1016/j.geomorph.2014.07.026
      Shahabi, H., Hashim, M., 2015. Landslide Susceptibility Mapping Using GIS-Based Statistical Models and Remote Sensing Data in Tropical Environment. Scientific Reports, 5: 9899. https://doi.org/10.1038/srep09899
      Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China- Lessons Learned from Decades of Research. Engineering Geology, 261: 105267. https://doi.org/10.1016/j.enggeo.2019.105267
      Tian, N. M., Lan, H. X., Wu, Y. M., et al., 2020. Performance Comparison of BP Artificial Neural Network and CART Decision Tree Model in Landslide Susceptibility Prediction. Journal of Geo-Information Science, 22(12): 2304-2316 (in Chinese).
      Wang, C. H., Lin, Q. G., Wang, L. B., et al., 2022. The Influences of the Spatial Extent Selection for Non- Landslide Samples on Statistical-Based Landslide Susceptibility Modelling: A Case Study of Anhui Province in China. Natural Hazards, 112(3): 1967-1988. https://doi.org/10.1007/s11069-022-05252-8
      Wang, J. J., Yin, K. L., Xiao, L. L., 2014. Landslide Susceptibility Assessment Based on GIS and Weighted Information Value: A Case Study of Wanzhou District, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 33(4): 797-808 (in Chinese).
      Wu, Y. C., Zhou, H. X., Che, A. L., 2021. Susceptibility of Landslides Caused by IBURI Earthquake Based on Rough Set-Neural Network. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1226-1235 (in Chinese).
      Wu, Y. L., Ke, Y. T., Chen, Z., et al., 2020. Application of Alternating Decision Tree with AdaBoost and Bagging Ensembles for Landslide Susceptibility Mapping. CATENA, 187: 104396. https://doi.org/10.1016/j.catena.2019.104396
      Yang, Y. G., Yin, K. L., Zhao, H. Y., et al., 2019. Landslide Susceptibility Evaluation for Township Units of Bank Section in Wanzhou District Based on C5.0 Decision Tree and K-Means Cluster Model. Geological Science and Technology Information, 38(6): 189-197 (in Chinese).
      Yin, K. L., Zhang, Y., Wang, Y., 2022. A Review of Landslide-Generated Waves Risk and Practice of Management of Hazard Chain Risk from Reservoir Landslide. Bulletin of Geological Science and Technology, 41(2): 1-12 (in Chinese).
      Youssef, A. M., Pourghasemi, H. R., Pourtaghi, Z. S., et al., 2016. Landslide Susceptibility Mapping Using Random Forest, Boosted Regression Tree, Classification and Regression Tree, and General Linear Models and Comparison of Their Performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5): 839-856. https://doi.org/10.1007/s10346-015-0614-1
      Yu, L. B., Cao, Y., Zhou, C., et al., 2019. Landslide Susceptibility Mapping Combining Information Gain Ratio and Support Vector Machines: A Case Study from Wushan Segment in the Three Gorges Reservoir Area, China. Applied Sciences, 9(22): 4756. https://doi.org/10.3390/app9224756
      Zhou, C., 2018. Landslide Identification and Prediction with the Application of Time Series InSAR(Dissertation). China University of Geosciences, Wuhan (in Chinese).
      Zhou, C., Cao, Y., Yin, K. L., et al., 2022. Characteristic Comparison of Seepage-Driven and Buoyancy-Driven Landslides in Three Gorges Reservoir Area, China. Engineering Geology, 301: 106590. https://doi.org/10.1016/j.enggeo.2022.106590
      Zhou, C., Yin, K. L., Cao, Y., et al., 2018a. Displacement Prediction of Step-Like Landslide by Applying a Novel Kernel Extreme Learning Machine Method. Landslides, 15(11): 2211-2225. https://doi.org/10.1007/s10346-018-1022-0
      Zhou, C., Yin, K. L., Cao, Y., et al., 2018b. Landslide Susceptibility Modeling Applying Machine Learning Methods: A Case Study from Longju in the Three Gorges Reservoir Area, China. Computers & Geosciences, 112: 23-37. https://doi.org/10.1016/j.cageo.2017.11.019
      Zhou, C., Yin, K. L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876 (in Chinese with English abstract).
      Zhou, C., Yin, K. L., Xiang, Z. B., et al., 2015. Quantitative Evaluation of the Landslide Susceptibility in Chun'an County Based on GIS. Safety and Environmental Engineering, 22(1): 45-50, 55 (in Chinese).
      Zhou, X. T., Huang, F. M., Wu, W. C., et al., 2022. Regional Landslide Susceptibility Prediction Based on Negative Sample Selected by Coupling Information Value Method. Advanced Engineering Sciences, 54(3): 25-35 (in Chinese).
      陈涛, 钟子颖, 牛瑞卿, 等, 2020. 利用深度信念网络进行滑坡易发性评价. 武汉大学学报(信息科学版), 45(11): 1809-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011018.htm
      郭子正, 殷坤龙, 付圣, 等, 2019a. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555
      郭子正, 殷坤龙, 黄发明, 等, 2019b. 基于滑坡分类和加权频率比模型的滑坡易发性评价. 岩石力学与工程学报, 38(2): 287-300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902007.htm
      黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. doi: 10.3799/dqkx.2022.247
      黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
      李松林, 许强, 汤明高, 等, 2020. 三峡库区滑坡空间发育规律及其关键影响因子. 地球科学, 45(1): 341-354. doi: 10.3799/dqkx.2017.576
      林荣福, 刘纪平, 徐胜华, 等, 2020. 随机森林赋权信息量的滑坡易发性评价方法. 测绘科学, 45(12): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD202012020.htm
      刘磊, 殷坤龙, 徐勇, 等, 2018. 考虑降雨及库水位变动的区域滑坡灾害稳定性评价研究. 岩石力学与工程学报, 37(2): 403-414. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201802014.htm
      彭令, 2013. 三峡库区滑坡灾害风险评估研究(博士学位论文). 武汉: 中国地质大学.
      田乃满, 兰恒星, 伍宇明, 等, 2020. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比. 地球信息科学学报, 22(12): 2304-2316. doi: 10.12082/dqxxkx.2020.190766
      王佳佳, 殷坤龙, 肖莉丽, 2014. 基于GIS和信息量的滑坡灾害易发性评价: 以三峡库区万州区为例. 岩石力学与工程学报, 33(4): 797-808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603013.htm
      吴雨辰, 周晗旭, 车爱兰, 2021. 基于粗糙集-神经网络的IBURI地震滑坡易发性研究. 岩石力学与工程学报, 40(6): 1226-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106013.htm
      杨永刚, 殷坤龙, 赵海燕, 等, 2019. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划. 地质科技情报, 38(6): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201906023.htm
      殷坤龙, 张宇, 汪洋, 2022. 水库滑坡涌浪风险研究现状和灾害链风险管控实践. 地质科技通报, 41(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202001.htm
      周超, 2018. 集成时间序列InSAR技术的滑坡早期识别与预测研究(博士学位论文). 武汉: 中国地质大学.
      周超, 殷坤龙, 曹颖, 等, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071
      周超, 殷坤龙, 向章波, 等, 2015. 基于GIS的淳安县滑坡易发性定量评价. 安全与环境工程, 22(1): 45-50, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201501008.htm
      周晓亭, 黄发明, 吴伟成, 等, 2022. 基于耦合信息量法选择负样本的区域滑坡易发性预测. 工程科学与技术, 54(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(7)

      Article views (854) PDF downloads(83) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return