• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 7
    Jul.  2024
    Turn off MathJax
    Article Contents
    Zhang Hongrui, Liu Hua, Han Zaihua, Li Jun, Zhang Weibiao, 2024. Characteristics of Fluid Inclusions and Pressure Recovery during Hydrocarbon Accumulation Period in Jurassic Sangonghe Formation in Fukang Sag, Junggar Basin. Earth Science, 49(7): 2420-2433. doi: 10.3799/dqkx.2022.411
    Citation: Zhang Hongrui, Liu Hua, Han Zaihua, Li Jun, Zhang Weibiao, 2024. Characteristics of Fluid Inclusions and Pressure Recovery during Hydrocarbon Accumulation Period in Jurassic Sangonghe Formation in Fukang Sag, Junggar Basin. Earth Science, 49(7): 2420-2433. doi: 10.3799/dqkx.2022.411

    Characteristics of Fluid Inclusions and Pressure Recovery during Hydrocarbon Accumulation Period in Jurassic Sangonghe Formation in Fukang Sag, Junggar Basin

    doi: 10.3799/dqkx.2022.411
    • Received Date: 2022-04-07
      Available Online: 2024-08-03
    • Publish Date: 2024-07-25
    • Formation pressure recovery is of great significance for the analysis of hydrocarbon accumulation process. This study restores the pressure of Jurassic Sangonghe Formation during hydrocarbon accumulation period in Fukang Sag with inclusion observation technology, the inclusion salinity homogenization temperature method and PVTx simulation method. The results show that the overpressure of Jurassic begins from 4 500 m, and the overpressure amplitude increases with the increase in buried depth, in Fukang Sag. At the same depth, the overpressure of the main reservoir of Sangonghe Formation is obvious. There are two stages of hydrocarbon inclusions captured in the Sangonghe Formation. The fluorescence colors of hydrocarbon inclusions captured in the first stage which occur inside the quartz particles are mainly yellow and yellowish green, and the main temperature range of associated aqueous inclusions is 85-95 ℃, corresponding to the hydrocarbon accumulation in the middle of Early Cretaceous. Since Neogene, the fluorescence color of hydrocarbon inclusions captured in the second stage, which occur along the healing seams that cut through secondary enlargement of quartz or the whole the after the secondary, is mainly bluish white, and the number of the gas-liquid two-phase hydrocarbon inclusions significantly increases. The homogenization temperature of associated aqueous inclusions is 105-115 ℃, corresponding to hydrocarbon accumulation since the Neogene. During hydrocarbon migration and accumulation, overpressure developed in the Sangonghe Formation. The pressure coefficient in the first stage is 1.39-1.44 and that in the second stage is as high as 2.11. The pressure presents the evolution mode of "pressurization-decompression-strong pressurization". Strong overpressure represents strong hydrocarbon transportation and movement force. It is the key factor for hydrocarbon accumulation in Jurassic tight reservoirs.

       

    • loading
    • Aplin, A. C., MacLeod, G., Larter, S. R., et al., 1999. Combined Use of Confocal Laser Scanning Microscopy and PVT Simulation for Estimating the Composition and Physical Properties of Petroleum in Fluid Inclusions. Marine and Petroleum Geology, 16(2): 97-110. https://doi.org/10.1016/S0264-8172(98)00079-8
      Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. https://doi.org/10.1016/0016-7037(89)90136-1
      Gong, Y. J., Zhang, K. H., Zeng, Z. P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract).
      Hao, F., Zou, Y. H., Jiang, J. Q., et al., 2005. Hydrocarbon Generation Dynamics and Hydrocarbon Accumulation Mechanism in Overpressure Basins. Science Press, Beijing, 239-254 (in Chinese).
      He, D. F., Zhang, L., Wu, S. T., et al., 2018. Tectonic Evolution Stages and Features of the Junggar Basin. Oil & Gas Geology, 39(5): 845-861 (in Chinese with English abstract).
      Hunt, J. M., Liu, S. Y., 1990. Generation and Migration of Oil in Abnormal Pressure Fluid Interval. Geology - Geochemistry, 18(6): 13-22 (in Chinese).
      Li, J., Zhao, J. Z., Wei, X. S., et al., 2019. Origin of Abnormal Pressure in the Upper Paleozoic Shale of the Ordos Basin, China. Marine and Petroleum Geology, 110: 162-177. https://doi.org/10.1016/j.marpetgeo.2019.07.016
      Li, P. P., Zou, H. Y., Hao, F., et al., 2006. Restoration of Eroded Strata Thickness in Cretaceous/Jurassic Unconformity in Hinterland of Junggar Basin. Acta Petrolei Sinica, 27(6): 34-38 (in Chinese with English abstract).
      Lindsay, R., Towner, B., 2001. Pore Pressure Influence on Rock Property and Reflectivity Modeling. The Leading Edge, 20(2): 184-187. https://doi.org/10.1190/1.1438906
      Liu, B., 2001. Density and Isochoric Formulae for NaCl-H2O Inclusions with Medium and High Salinity and Their Applications. Geological Review, 47(6): 617-622 (in Chinese with English abstract).
      Liu, H., Hu, X. Q., Liang, J. J., et al., 2018. Characteristics of Jurassic Fault and Its Control Effect on Hydrocarbon Accumulation in the Block 4 in the Middle of the Junggar Basin. Geological Review, 64(6): 1489-1504 (in Chinese with English abstract).
      Liu, H., Jiang, Y. L., Lu, H., et al., 2016. Restoration of Fluid Pressure during Hydrocarbon Accumulation Period and Fluid Inclusion Feature in the Bonan Sag. Earth Science, 41(8): 1384-1394 (in Chinese with English abstract).
      Luo, X. R., Wang, Z. M., Zhang, L. Q., et al., 2007. Overpressure Generation and Evolution in a Compressional Tectonic Setting, the Southern Margin of Junggar Basin, Northwestern China. AAPG Bulletin, 91(8): 1123-1139. https://doi.org/10.1306/02260706035
      Mao, C., Chen, Y., Zhou, Y. Q., et al., 2015. Improved Thermodynamic Simulation Method of Hydrocarbon Fluid Inclusions and Its Application in Oil and Gas Accumulation Research. Journal of Jilin University (Earth Science Edition), 45(5): 1352-1364 (in Chinese with English abstract).
      O'Connor, S., Swarbrick, R., Lahann, R., 2011. Geologically-Driven Pore Fluid Pressure Models and Their Implications for Petroleum Exploration. Introduction to Thematic Set. Geofluids, 11(4): 343-348. https://doi.org/10.1111/j.1468-8123.2011.00354.x
      Qiu, N. S., Wang, X. L., Yang, H. B., et al., 2001. The Characteristics of Temperature Distribution in the Junggar Basin. Scientia Geologica Sinica, 36(3): 350-358 (in Chinese with English abstract).
      Roedder, E., Bodnar, R. J., 1980. Geologic Pressure Determinations from Fluid Inclusion Studies. Annual Review of Earth and Planetary Sciences, 8: 263-301. https://doi.org/10.1146/annurev.ea.08.050180.001403
      Shi, H. G., 2017. Jurassic Reservoir Development in Fukang Deep Sag, Central Junggar Basin. Petroleum Geology & Experiment, 39(2): 238-246 (in Chinese with English abstract).
      Su, A., Chen, H. H., Lei, C., et al., 2014. Application of PVTx Simulation of Fluid Inclusions to Estimate Petroleum Charge Stages and Restore Pressure: Using Pinghu Structural Belt in Xihu Depression as an Example. Geological Science and Technology Information, 33(6): 137-142 (in Chinese with English abstract).
      Su, A., Chen, H. H., Zhao, J. X., et al., 2020. Integrated Fluid Inclusion Analysis and Petrography Constraints on the Petroleum System Evolution of the Central and Southern Biyang Sag, Nanxiang Basin, Eastern China. Marine and Petroleum Geology, 118: 104437. https://doi.org/10.1016/j.marpetgeo.2020.104437
      Thomas, A. V., Pasteris, J. D., Bray, C. J., et al., 1990. H2O-CH4-NaCl-CO2 Inclusions from the Footwall Contact of the Tanco Granitic Pegmatite: Estimates of Internal Pressure and Composition from Microthermometry, Laser Raman Spectroscopy, and Gas Chromatography. Geochim. Cosmochim. Acta, 54(3): 559-573. https://doi.org/10.1016/0016-7037(90)90353-M
      Tian, X. R., Zhang, Y. Y., Zhuo, Q. G., et al., 2019. Tight Oil Charging Characteristics of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin: Evidence from Fluid Inclusions in Alkaline Minerals. Acta Petrolei Sinica, 40(6): 646-659 (in Chinese with English abstract).
      Wang, F. L., Tang, G. M., Chen, R. T., et al., 2021. Thickening Mechanism and Reservoir Formation Model of Bozhong 29-6 Oilfield in Huanghekou Sag, Bohai Bay Basin. Earth Science, 46(9): 3189-3202 (in Chinese with English abstract).
      Wu, H. S., Zheng, M. L., He, W. J., et al., 2017. Formation Pressure Anomalies and Controlling Factors in Central Junggar Basin. Oil & Gas Geology, 38(6): 1135-1146 (in Chinese with English abstract).
      Xu, W. L., Liu, R., Wen, H. G., et al., 2017. Diagenesis and Diagenetic Facies of 2nd Member of Lower Juriassic Sangonghe Formation in Fubei Area, Junggar Basin. Geological Bulletin of China, 36(4): 555-564 (in Chinese with English abstract).
      Yang, Z., Zou, C. N., Chen, J. J., et al., 2021. "Exploring Petroleum inside or near the Source Kitchen": Innovations in Petroleum Geology Theory and Reflections on Hydrocarbon Exploration in Key Fields. Acta Petrolei Sinica, 42(10): 1310-1324 (in Chinese with English abstract).
      Yin, W., Zheng, H. R., 2009. Hydrocarbon Accumulation Stages and Exploration Directions in the Central Junggar Basin. Petroleum Geology & Experiment, 31(3): 216-220, 226 (in Chinese with English abstract).
      Zhang, F. Q., Lu, X. S., Zhuo, Q. G., et al., 2020. Genetic Mechanism and Evolution Characteristics of Overpressure in the Lower Play at the Southern Margin of the Junggar Basin, Northwestern China. Oil & Gas Geology, 41(5): 1004-1016 (in Chinese with English abstract).
      Zhang, Y. G., Frantz, J. D., 1987. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaCl KCl CaCl2 H2O Using Synthetic Fluid Inclusions. Chemical Geology, 64(3-4): 335-350. https://doi.org/10.1016/0009-2541(87)90012-X
      宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
      郝芳, 邹华耀, 姜建群, 等, 2005. 超压盆地生烃作用动力学与油气成藏机理. 北京: 科学出版社, 239-254.
      何登发, 张磊, 吴松涛, 等, 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845-861. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805002.htm
      Hunt, J. M., 刘淑英, 1990. 异常压力流体区间中石油的生成与运移. 地质地球化学, 18(6): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199006002.htm
      李平平, 邹华耀, 郝芳, 等, 2006. 准噶尔盆地腹部白垩系/侏罗系不整合地层剥蚀厚度的恢复方法. 石油学报, 27(6): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200606006.htm
      刘斌, 2001. 中高盐度NaCl-H2O包裹体的密度式和等容式及其应用. 地质论评, 47(6): 617-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200106014.htm
      刘辉, 胡修权, 梁家驹, 等, 2018. 准噶尔盆地准中4区块侏罗系断裂特征及对油气成藏的控制作用. 地质论评, 64(6): 1489-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201806016.htm
      刘华, 蒋有录, 卢浩, 等, 2016. 渤南洼陷流体包裹体特征与成藏期流体压力恢复. 地球科学, 41(8): 1384-1394. doi: 10.3799/dqkx.2016.109
      毛毳, 陈勇, 周瑶琪, 等, 2015. 改进后的烃类流体包裹体热力学模拟方法及其在油气成藏研究中的应用. 吉林大学学报(地球科学版), 45(5): 1352-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505009.htm
      邱楠生, 王绪龙, 杨海波, 等, 2001. 准噶尔盆地地温分布特征. 地质科学, 36(3): 350-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200103010.htm
      石好果, 2017. 准噶尔盆地腹部阜康深凹带侏罗系成藏规律. 石油实验地质, 39(2): 238-246. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201702013.htm
      苏奥, 陈红汉, 雷川, 等, 2014. 流体包裹体PVTx模拟研究油气充注期次和古压力恢复: 以西湖凹陷平湖构造带为例. 地质科技情报, 33(6): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406019.htm
      田孝茹, 张元元, 卓勤功, 等, 2019. 准噶尔盆地玛湖凹陷下二叠统风城组致密油充注特征——碱性矿物中的流体包裹体证据. 石油学报, 40(6): 646-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201906002.htm
      王飞龙, 汤国民, 陈容涛, 等, 2021. 渤海湾盆地黄河口凹陷渤中29‒6油田原油稠化机制及成藏模式. 地球科学, 46(9): 3189-3202. doi: 10.3799/dqkx.2020.331
      吴海生, 郑孟林, 何文军, 等, 2017. 准噶尔盆地腹部地层压力异常特征与控制因素. 石油与天然气地质, 38(6): 1135-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201706016.htm
      徐文礼, 刘冉, 文华国, 等, 2017. 准噶尔盆地阜北地区下侏罗统三工河组二段成岩作用及成岩相. 地质通报, 36(4): 555-564. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201704009.htm
      杨智, 邹才能, 陈建军, 等, 2021. "进(近)源找油": 油气地质理论创新与重点领域勘探思考. 石油学报, 42(10): 1310-1324. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202110005.htm
      尹伟, 郑和荣, 2009. 准噶尔盆地中部油气成藏期次及勘探方向. 石油实验地质, 31(3): 216-220, 226. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202204001.htm
      张凤奇, 鲁雪松, 卓勤功, 等, 2020. 准噶尔盆地南缘下组合储层异常高压成因机制及演化特征. 石油与天然气地质, 41(5): 1004-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005012.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(5)

      Article views (480) PDF downloads(41) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return