• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 7
    Jul.  2024
    Turn off MathJax
    Article Contents
    Que Xiaoming, Shu Yu, Wang Xudong, Lei Yongchang, Wang Yuchen, Wu Qiongling, 2024. Provenance Characteristics and Sedimentary Evolution of Zhu Ⅰ Depression in Paleogene: Indications from Detrital Zircon Ages. Earth Science, 49(7): 2373-2387. doi: 10.3799/dqkx.2022.428
    Citation: Que Xiaoming, Shu Yu, Wang Xudong, Lei Yongchang, Wang Yuchen, Wu Qiongling, 2024. Provenance Characteristics and Sedimentary Evolution of Zhu Ⅰ Depression in Paleogene: Indications from Detrital Zircon Ages. Earth Science, 49(7): 2373-2387. doi: 10.3799/dqkx.2022.428

    Provenance Characteristics and Sedimentary Evolution of Zhu Ⅰ Depression in Paleogene: Indications from Detrital Zircon Ages

    doi: 10.3799/dqkx.2022.428
    • Received Date: 2022-08-08
      Available Online: 2024-08-03
    • Publish Date: 2024-07-25
    • The sedimentary filling evolution during the Paleogene rifting process in Zhu Ⅰ depression remains hotly disputed. Tracing source to sink process of the Paleogene was carried out on the sandstones of Wenchang Formation and Enping Formation in Zhu Ⅰ depression, with the method of zircon U-Pb dating. The geochronology, provenance and sedimentary filling evolution in different evolution stages were further explored. The results show that the sags in Zhu Ⅰ depression not only received the intrabasinal provenances from the paleo-uplift area, but also were affected by the terrigenous supply transported from the northern peripheral uplifts in South China Block during rifting stage. The Wenchang Formation sediments were dominated by intrabasinal short-distance provenances, which were derived from paleo-uplifts nearby the sags, including Mesozoic magmatic rocks, Mesozoic sedimentary strata and Cenozoic volcanics. The U-Pb geochronology of all sags was characterized by the dominance of Yanshanian clusters except for multi-peaks in Yanshanian, Indosinian, Caledonian periods in Lufeng Sag. The sediments of the Enping Formation were firstly affected by the materials from the South China Block in the north of Enping Sag and the west of Huizhou Sag. During the deposition period of the upper Enping Formation, the age spectra of Zhu Ⅰ depression sediments show a wide Proterozoic to Mesozoic range with the peak complexity in Yanshanian, Indosinian, Caledonian and Jinningian periods. Thus, the sags were filled by the materials from both the South China Block and peripheral uplifts with the gradual increase of material supply from the South China Block, indicating that the basin provenances had changed from near-source to far-source ones. Meanwhile, the Zhu Ⅰ depression was characterized by large shallow braided deltas that were formed via relatively long-distance transportation.

       

    • loading
    • Chen, G., 2019. Organic Matter Enrichment of Fine-Grained Source Rock in Shollow Lake Facies: An Example from Chang 7 Unit Source Rock in Yanchi-Dingbian Area (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      Cui, Y. C., Cao, L. C., Qiao, P. J., et al., 2018. Provenance Evolution of Paleogene Sequence (Northern South China Sea) Based on Detrital Zircon U-Pb Dating Analysis. Earth Science, 43(11): 4169-4179 (in Chinese with English abstract).
      Cui, Y. C., Shao, L., Qiao, P. J., et al., 2019. Upper Miocene-Pliocene Provenance Evolution of the Central Canyon in Northwestern South China Sea. Marine Geophysical Research, 40(2): 223-235. https://doi.org/10.1007/s11001-018-9359-2
      Ding, L., Li, X. Y., Zhou, F. J., et al., 2022. Differential Development Characteristics and Main Controlling Factors of the Paleogene High-Quality Reservoirs from the Zhu Ⅰ Depression in the Pearl River Mouth Basin: A Case on Wenchang Formation at Lufeng Area and Huizhou Area. Acta Petrologica et Mineralogica, 41(1): 75-86 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2022.01.006
      Du, J. Y., Zhang, X. T., Liu, P., et al., 2021. Classification of Paleogene Source-to-Sink System and Its Petroleum Geological Significance in Zhuyi Depression of Pearl River Mouth Basin. Earth Science, 46(10): 3690-3706 (in Chinese with English abstract).
      Du, X. D., Peng, G. R., Wu, J., et al., 2021. Tracing Source-to-Sink Process of the Eocene in the Eastern Yangjiang Sag, Pearl River Mouth Basin: Evidence from Detrital Zircon Spectrum. Marine Geology & Quaternary Geology, 41(6): 124-137 (in Chinese with English abstract).
      He, J., 2021. Sediment Charateristics and Its Weathering and Provenance Implication of the Pearl River and Rivers in South China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Jiao, P., Guo, J. H., Wang, X. K., et al., 2018. Detrital Zircon Genesis and Provenance Tracing for Reservoirs in the Lower Zhujiang Formation in Hanjiang-Lufeng Sag, Pearl River Mouth Basin. Oil & Gas Geology, 39(2): 239-253 (in Chinese with English abstract).
      Li, J. L., Wang, J. Q., Peng, H., et al., 2023. Detrital Zircon U-Pb Dating and Provenance Significance of the Lower Cretaceous Yijun Formation in the Southern Ordos Basin. Acta Sedimentologica Sinica, 41(5): 1609-1623 (in Chinese with English abstract).
      Li, X. H., Li, Z. X., He, B., et al., 2012. The Early Permian Active Continental Margin and Crustal Growth of the Cathaysia Block: In Situ U-Pb, Lu-Hf and O Isotope Analyses of Detrital Zircons. Chemical Geology, 328: 195-207. https://doi.org/10.1016/j.chemgeo.2011.10.027
      Liao, J. H., Xu, Q., Chen, Y., et al., 2016. Sedimentary Characteristics and Genesis of the Deepwater Channel System in Zhujiang Formation of Baiyun-Liwan Sag. Earth Science, 41(6): 1041-1054 (in Chinese with English abstract).
      Liu, C., Clift, P. D., Carter, A., et al., 2017. Controls on Modern Erosion and the Development of the Pearl River Drainage in the Late Paleogene. Marine Geology, 394: 52-68. https://doi.org/10.1016/j.margeo.2017.07.011
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Lin, C. S., Zhang, Y. M., Li, S. T., et al., 2004. Episodic Rifting Dynamic Process and Quantitative Model of Mesozoic-Cenozoic Faulted Basins in Eastern China. Earth Science, 29(5): 583-588 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.05.013
      Lin, X., Liu, J., Wu, Z. H., et al., 2020. Detrital Zircon U-Pb Ages and K-Feldspar Main and Trace Elements Provenance Studying from Fluvial to Marine Sediments in Northern China. Acta Geologica Sinica, 94(10): 3024-3035 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.10.016
      Lü, F. L., Liu, C. L., Jiao, P. C., et al., 2018. Provenance of the Quaternary Lake Basin and Tectonic Evolution of the Basin in Lop Nur: Evidence from Detrital Zircon U-Pb Age of Core LDK01. Acta Geologica Sinica, 92(8): 1571-1588 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.08.002
      Mi, L. J., Zhang, X. T., Chen, W. T., et al., 2018. Hydrocarbon Enrichment Law of Paleogene Zhu1 Depression and Its Next Exploration Strategy in Pearl River Mouth Basin. China Offshore Oil and Gas, 30(6): 1-13 (in Chinese with English abstract).
      Que, X. M., Lei, Y. C., Zhang, X. T., et al., 2022. Determination and Geological Significance of Fault- Depression Transformation Interface in the Southern Lufeng Area. Acta Geologica Sinica, 96(11): 3943-3954 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.11.018
      Shao, L., Cao, L. C., Pang, X., et al., 2016. Detrital Zircon Provenance of the Paleogene Syn-Rift Sediments in the Northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255-269. https://doi.org/10.1002/2015gc006113
      Shi, H. S., Du, J. Y., Mei, L. F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract).
      Shi, H. S, Shu, Y., Du, J. Y., et al., 2017. Petroleum Geology of Paleogene Fault Basin in the Pearl River Mouth Basin. China University of Geosciences Press, Wuhan (in Chinese).
      Shi, H. S., Xu, C. H., Zhou, Z. Y., et al., 2011. Zircon U-Pb Dating on Granitoids from the Northern South China Sea and Its Geotectonic Relevance. Acta Geologica Sinica (English Edition), 85(6): 1359-1372. https://doi.org/10.1111/j.1755-6724.2011.00592.x
      Sircombe, K. N., 1999. Tracing Provenance through the Isotope Ages of Littoral and Sedimentary Detrital Zircon, Eastern Australia. Sedimentary Geology, 124(1-4): 47-67. https://doi.org/10.1016/s0037-0738(98)00120-1
      Vermeesch, P., 2013. Multi-Sample Comparison of Detrital Age Distributions. Chemical Geology, 341(2): 140-146. https://doi.org/10.1016/j.chemgeo.2013.01.010
      Wang, F. Y., Ling, M. X., Ding, X., et al., 2011. Mesozoic Large Magmatic Events and Mineralization in SE China: Oblique Subduction of the Pacific Plate. International Geology Review, 53(5-6): 704-726. https://doi.org/10.1080/00206814.2010.503736
      Wang, W., Ye, J. R., Yang, X. H., et al., 2015. Sediment Provenance and Depositional Response to Multistage Rifting, Paleogene, Huizhou Depression, Pearl River Mouth Basin. Earth Science, 40(6): 1061-1071 (in Chinese with English abstract).
      Wu, Y. B., Zheng, Y. F., 2004. The Research of Zircon Genetic Mineralogy and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      Xie, S. W., Wang, Y. C., Shu, Y., et al., 2022. Environmental Reconstruction for the Paleo-Lake of ZhuⅠdepression and the Depositional Model for High-Quality Source Rocks. Marine Geology & Quaternary Geology, 42(1): 159-169 (in Chinese with English abstract).
      Xu, C. H., Shi, H. S., Barnes, C. G., et al., 2016. Tracing a Late Mesozoic Magmatic Arc along the Southeast Asian Margin from the Granitoids Drilled from the Northern South China Sea. International Geology Review, 58(1): 71-94. https://doi.org/10.1080/00206814.2015.1056256
      Zeng, Z. W., 2020. Source-to-Sink (S2S) System Analysis of the Paleogene in the Pearl River Mouth Basin, Northern South China Sea (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zeng, Z. W., Zhu, H. T., Yang, X. H., et al., 2017. Provenance Transformation and Sedimentary Evolution of Enping Formation, Baiyun Sag, Pearl River Mouth Basin. Earth Science, 42(11): 1936-1954 (in Chinese with English abstract).
      Zhang, C. M., Sun, Z., Zhao, M. H., et al., 2022. Crustal Structure and Tectono-Magmatic Evolution of Northern South China Sea. Earth Science, 47(7): 2337-2353 (in Chinese with English abstract).
      Zhang, Q. L., Zhang, X. T., Xu, C. H., et al., 2022. Application of Fission Track Thermochronology in Provenance Analysis of the Oligocene Zhuhai Formation in Pearl River Mouth Basin. Journal of Palaeogeography (Chinese Edition), 24(1): 129-138 (in Chinese with English abstract).
      Zhang, X. T., Xiang, X. H., Zhao, M., et al., 2022. Coupling Relationship between Pearl River Water System Evolution and East Asian Terrain Inversion. Earth Science, 47(7): 2410-2420 (in Chinese with English abstract).
      Zhao, M., Shao, L., Qiao, P. J., 2015. Characteristics of Detrital Zircon U-Pb Geochronology of the Pearl River Sands and Its Implication on Provenances. Journal of Tongji University (Natural Science), 43(6): 915-923 (in Chinese with English abstract).
      Zhu, H. T., Li, S., Liu, H. R., et al., 2016. The Types and Implication of Migrated Sequence Stratigraphic Architecture in Continental Lacustrine Rift Basin: An Example from the Paleogene Wenchang Formation of Zhu Ⅰ Depression, Pearl River Mouth Basin. Earth Science, 41(3): 361-372 (in Chinese with English abstract).
      陈果, 2019. 滨浅湖细粒沉积烃源岩有机质富集机理研究——以鄂尔多斯盆地盐池‒定边地区长7段烃源岩为例(博士学位论文). 北京: 中国石油大学.
      崔宇驰, 曹立成, 乔培军, 等, 2018. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化. 地球科学, 43(11): 4169-4179. doi: 10.3799/dqkx.2017.594
      丁琳, 李晓艳, 周凤娟, 等, 2022. 珠江口盆地珠一坳陷古近系优质储层差异发育特征及主控因素——以陆丰地区和惠州地区文昌组为例. 岩石矿物学杂志, 41(1): 75-86. doi: 10.3969/j.issn.1000-6524.2022.01.006
      杜家元, 张向涛, 刘培, 等, 2021. 珠江口盆地珠一坳陷古近系"源‒汇" 系统分类及石油地质意义. 地球科学, 46(10): 3690-3706. doi: 10.3799/dqkx.2020.133
      杜晓东, 彭光荣, 吴静, 等, 2021. 珠江口盆地阳江东凹始新统的源汇过程: 碎屑锆石定年及物源示踪. 海洋地质与第四纪地质, 41(6): 124-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202106011.htm
      何杰, 2021. 珠江及华南河流现代沉积物特征、风化及物源示踪研究(博士学位论文). 武汉: 中国地质大学.
      焦鹏, 郭建华, 王玺凯, 等, 2018. 珠江口盆地韩江‒陆丰凹陷珠江组下段碎屑锆石来源与储层物源示踪. 石油与天然气地质, 39(2): 239-253. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802005.htm
      李姣莉, 王建强, 彭恒, 等, 2023. 鄂尔多斯盆地南部下白垩统宜君组碎屑锆石U-Pb年龄及物源意义. 沉积学报, 41(5): 1609-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202305023.htm
      廖计华, 徐强, 陈莹, 等, 2016. 白云‒荔湾凹陷珠江组大型深水水道体系沉积特征及成因机制. 地球科学, 41(6): 1041-1054. doi: 10.3799/dqkx.2016.086
      林畅松, 张燕梅, 李思田, 等, 2004. 中国东部中新生代断陷盆地幕式裂陷过程的动力学响应和模拟模型. 地球科学, 29(5): 583-588. doi: 10.3321/j.issn:1000-2383.2004.05.013
      林旭, 刘静, 吴中海, 等, 2020. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究. 地质学报, 94(10): 3024-3035. doi: 10.3969/j.issn.0001-5717.2020.10.016
      吕凤琳, 刘成林, 焦鹏程, 等, 2018. 罗布泊第四纪湖盆物源与盆地构造演化特征: 来自LDK01孔碎屑锆石U-Pb年龄证据. 地质学报, 92(8): 1571-1588. doi: 10.3969/j.issn.0001-5717.2018.08.002
      米立军, 张向涛, 陈维涛, 等, 2018. 珠江口盆地珠一坳陷古近系油气富集规律及下一步勘探策略. 中国海上油气, 30(6): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201806001.htm
      阙晓铭, 雷永昌, 张向涛, 等, 2022. 陆丰南地区断拗转换界面厘定及其地质意义. 地质学报, 96(11): 3943-3954. doi: 10.3969/j.issn.0001-5717.2022.11.018
      施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm
      施和生, 舒誉, 杜家元, 等, 2017. 珠江口盆地古近系断陷盆地石油地质. 武汉: 中国地质大学出版社.
      王维, 叶加仁, 杨香华, 等, 2015. 珠江口盆地惠州凹陷古近纪多幕裂陷旋回的沉积物源响应. 地球科学, 40(6): 1061-1071. doi: 10.3799/dqkx.2015.088
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      谢世文, 王宇辰, 舒誉, 等, 2022. 珠一坳陷湖盆古环境恢复与优质烃源岩发育模式. 海洋地质与第四纪地质, 42(1): 159-169. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202201013.htm
      曾智伟, 2020. 南海北部珠江口盆地古近纪源‒汇系统耦合研究(博士学位论文). 武汉: 中国地质大学.
      曾智伟, 朱红涛, 杨香华, 等, 2017. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化. 地球科学, 42(11): 1936-1954. doi: 10.3799/dqkx.2017.123
      张翠梅, 孙珍, 赵明辉, 等, 2022. 南海北部陆缘结构及构造‒岩浆演化. 地球科学, 47(7): 2337-2353. doi: 10.3799/dqkx.2021.208
      张青林, 张向涛, 许长海, 等, 2022. 裂变径迹热年代学在珠江口盆地渐新统珠海组物源分析中的应用. 古地理学报, 24(1): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202201010.htm
      张向涛, 向绪洪, 赵梦, 等, 2022. 珠江水系演化与东亚地形倒转的耦合关系. 地球科学, 47(7): 2410-2420. doi: 10.3799/dqkx.2022.002
      赵梦, 邵磊, 乔培军, 2015. 珠江沉积物碎屑锆石U-Pb年龄特征及其物源示踪意义. 同济大学学报(自然科学版), 43(6): 915-923. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201506018.htm
      朱红涛, 李森, 刘浩冉, 等, 2016. 陆相断陷湖盆迁移型层序构型及意义: 以珠Ⅰ坳陷古近系文昌组为例. 地球科学, 41(3): 361-372. doi: 10.3799/dqkx.2016.028
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (358) PDF downloads(48) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return