Citation: | Wu Liyang, Zeng Taorui, Liu Xiepan, Guo Zizheng, Liu Zhenyi, Yin Kunlong, 2024. Landslide Susceptibility Assessment Based on Ensemble Learning Modeling. Earth Science, 49(10): 3841-3854. doi: 10.3799/dqkx.2022.451 |
Ankita, Sahana, S. K., 2021. Ba-PSO: A Balanced PSO to Solve Multi-Objective Grid Scheduling Problem. Applied Intelligence, 52(4): 4015-4027. https://doi.org/10.1007/s10489-021-02625-7
|
Ayalew, L., Yamagishi, H., 2005. The Application of GIS-Based Logistic Regression for Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2): 15-31. https://doi.org/10.1016/j.geomorph.2004.06.010
|
Can, R., Kocaman, S., Gokceoglu, C., 2021. A Comprehensive Assessment of XGBoost Algorithm for Landslide Susceptibility Mapping in the Upper Basin of Ataturk Dam, Turkey. Applied Sciences, 11(11): 4993. https://doi.org/10.3390/app11114993
|
Du, C. J., Yi, Q. L., Zhou, B., et al., 2017. Landslide Susceptibility Assessment in Yunyang District of Three Gorges Reservoir Based on GIS and Weighted Information Value. Journal of China Three Gorges University (Natural Sciences), 39(2): 48-53 (in Chinese with English abstract).
|
Du, G. L., Yang, Z. H., Yuan, Y., et al., 2021. Landslide Susceptibility Mapping in the Sichuan-Tibet Traffic Corridor Using Logistic Regression-Information Value Method. Hydrogeology & Engineering Geology, 48(5): 102-111 (in Chinese with English abstract).
|
Fang, Z. C., Wang, Y., Peng, L., et al., 2021. A Comparative Study of Heterogeneous Ensemble-Learning Techniques for Landslide Susceptibility Mapping. International Journal of Geographical Information Science, 35(2): 321-347. https://doi.org/10.1080/13658816.2020.1808897
|
Guo, Z. Z., Yin, K. L., Huang, F. M., et al., 2019. Landslide Susceptibility Evaluation Based on Landslide Classification and Weighted Frequency Ratio Model. Chinese Journal of Rock Mechanics and Engineering, 38(2): 287-300 (in Chinese with English abstract).
|
Han, J. C., Zhang, H., Cao, J., 2021. Assessing Earthquake-Induced Landslide Susceptibility Based on Logistic Regression in 2008 Wenchuan Earthquake and 2014 Ludian Earthquake. Journal of Catastrophology, 36(2): 193-199 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-811X.2021.02.034
|
Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract).
|
Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
|
Jurek, A., Bi, Y. X., Wu, S. L., et al., 2014. A Survey of Commonly Used Ensemble-Based Classification Techniques. The Knowledge Engineering Review, 29(5): 551-581. https://doi.org/10.1017/s0269888913000155
|
Kavzoglu, T., Teke, A., 2022. Advanced Hyperparameter Optimization for Improved Spatial Prediction of Shallow Landslides Using Extreme Gradient Boosting (XGBoost). Bulletin of Engineering Geology and the Environment, 81(5): 1-22. https://doi.org/10.1007/s10064-022-02708-w
|
Li, J. J., Wang, H., Wang, R., 2022. Landslide Susceptibility Assessment Based on Machine Learning in Fuzhou Area. Journal of Water Resources and Architectural Engineering, 20(2): 146-152 (in Chinese with English abstract).
|
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
|
Liu, J., Li, S. L., Chen, T., 2018. Landslide Susceptibility Assesment Based on Optimized Random Forest Model. Geomatics and Information Science of Wuhan University, 43(7): 1085-1091 (in Chinese with English abstract).
|
Liu, S. H., Yin, K. L., Zhou, C., et al., 2021. Susceptibility Assessment for Landslide Initiated along Power Transmission Lines. Remote Sensing, 13(24): 5068. https://doi.org/10.3390/rs13245068
|
Mancini, F., Ceppi, C., Ritrovato, G., 2010. GIS and Statistical Analysis for Landslide Susceptibility Mapping in the Daunia Area, Italy. Natural Hazards and Earth System Sciences, 10(9): 1851-1864. https://doi.org/10.5194/nhess-10-1851-2010
|
Sheng, M. Q., Liu, Z. X., Zhang, X. Q., et al., 2021. Landslide Susceptibility Prediction Based on Frequency Ratio Analysis and Support Vector Machine. Science Technology and Engineering, 21(25): 10620-10628 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2021.25.009
|
Song, Y, Gong, J, Gao, S, et al., 2012. Susceptibility Assessment of Earthquake-Induced Landslides Using Bayesian Network: A Case Study in Beichuan, China. Computers & Geosciences, 42: 189-199. https://doi.org/10.1016/j.cageo.2011.09.011
|
Tehrany, M. S., Pradhan, B., Jebur, M. N., 2013. Spatial Prediction of Flood Susceptible Areas Using Rule Based Decision Tree (DT) and a Novel Ensemble Bivariate and Multivariate Statistical Models in GIS. Journal of Hydrology, 504: 69-79. https://doi.org/10.1016/j.jhydrol.2013.09.034
|
Tian, N. M., Lan, H. X., Wu, Y. M., et al., 2020. Performance Comparison of BP Artificial Neural Network and CART Decision Tree Model in Landslide Susceptibility Prediction. Journal of Geo-Information Science, 22(12): 2304-2316 (in Chinese with English abstract).
|
Wang, J. J., Yin, K. L., Xiao, L. L., 2014. Landslide Susceptibility Assessment Based on GIS and Weighted Information Value: A Case Study of Wanzhou District, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 33(4): 797-808 (in Chinese with English abstract).
|
Wang, Q., Xue, Y., Zhang, W., et al., 2021. Landslide Susceptibility Mapping Based on Support Vector Machine Models. Journal of Hunan City University (Natural Science), 30(1): 22-28 (in Chinese with English abstract).
|
Wang, S. B., Zhuang, J. Q., Zheng, J., et al., 2021. Application of Bayesian Hyperparameter Optimized Random Forest and XGBoost Model for Landslide Susceptibility Mapping. Frontiers in Earth Science, 9: 712240. https://doi.org/10.3389/feart.2021.712240
|
Wei, A. H., Yu, K. N., Dai, F. G., et al., 2022. Application of Tree-Based Ensemble Models to Landslide Susceptibility Mapping: A Comparative Study. Sustainability, 14(10): 6330. https://doi.org/10.3390/su14106330
|
Xie, W. Y., Chai, Q. Q., Gan, Y. H., et al., 2020. Strains Classification of Anoectochilus Roxburghii Using Multi-Feature Extraction and Stacking Ensemble Learning. Transactions of the Chinese Society of Agricultural Engineering, 36(14): 203-210 (in Chinese with English abstract).
|
Xu, J. W., Yang, Y., 2018. A Survey of Ensemble Learning Approaches. Journal of Yunnan University (Natural Sciences Edition), 40(6): 1082-1092 (in Chinese with English abstract).
|
Xu, S. H., Liu, J. P., Wang, X. H., et al., 2020. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province. Geomatics and Information Science of Wuhan University, 45(8): 1214-1222 (in Chinese with English abstract).
|
Yang, S., Li, D. Y., Yan, L. X., et al., 2021. Landslide Susceptibility Assessment in High and Steep Bank Slopes along Wujiang River Based on Random Forest Model. Safety and Environmental Engineering, 28(4): 131-138 (in Chinese with English abstract).
|
Yang, Y. G., Yin, K. L., Zhao, H. Y., et al., 2019. Landslide Susceptibility Evaluation for Township Units of Bank Section in Wanzhou District Based on C5.0 Decision Tree and K-Means Cluster Model. Geological Science and Technology Information, 38(6): 189-197 (in Chinese with English abstract).
|
Yin, K. L., Zhu, L. F., 2001. Landslide Hazard Zonation and Application of GIS. Earth Science Frontiers, 8(2): 279-284 (in Chinese with English abstract).
|
Zeng, T. R., Jiang, H. W., Liu, Q. L., et al., 2022. Landslide Displacement Prediction Based on Variational Mode Decomposition and MIC-GWO-LSTM Model. Stochastic Environmental Research and Risk Assessment, 36(5): 1353-1372. https://doi.org/10.1007/s00477-021-02145-3
|
Zhang, J., Yin, K. L., Wang, J. J., et al., 2016. Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(2): 284-296 (in Chinese with English abstract).
|
Zhang, S. C., Li, X. L., Zong, M., et al., 2017. Learning k for kNN Classification. ACM Transactions on Intelligent Systems and Technology, 8(3): 1-19. https://doi.org/10.1145/2990508
|
Zhang, Y. Y., Wen, H. J., Ma, C. C., et al., 2018. Study on Genetic Mechanism and Stability Evaluation of Caijiaba Super-Large Landslide Based on Multi-Source Data. Chinese Journal of Rock Mechanics and Engineering, 37(9): 2048-2063 (in Chinese with English abstract).
|
Zhao, D. M., Xie, J. K., Wang, C., et al., 2022. On-Line Transient Stability Assessment of a Power System Based on Bagging Ensemble Learning. Power System Protection and Control, 50(8): 1-10 (in Chinese with English abstract).
|
Zhou, C., Yin, K. L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876 (in Chinese with English abstract).
|
Zhou, W. H., Zhai, X. F., Tan, H. W., 2022. Research on Financial Frauds Prediction Model of Chinese Public Companies with XGBoost. The Journal of Quantitative & Technical Economics, 39(7): 176-196 (in Chinese with English abstract).
|
Zounemat-Kermani, M., Batelaan, O., Fadaee, M., et al., 2021. Ensemble Machine Learning Paradigms in Hydrology: A Review. Journal of Hydrology, 598: 126266. https://doi.org/10.1016/j.jhydrol.2021.126266
|
杜常见, 易庆林, 周宝, 等, 2017. 基于GIS和加权信息量的三峡库区云阳县滑坡灾害易发性评价. 三峡大学学报(自然科学版), 39(2): 48-53.
|
杜国梁, 杨志华, 袁颖, 等, 2021. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价. 水文地质工程地质, 48(5): 102-111.
|
郭子正, 殷坤龙, 黄发明, 等, 2019. 基于滑坡分类和加权频率比模型的滑坡易发性评价. 岩石力学与工程学报, 38(2): 287-300.
|
韩继冲, 张朝, 曹娟, 2021. 基于逻辑回归的地震滑坡易发性评价: 以汶川地震、鲁甸地震为例. 灾害学, 36(2): 193-199.
|
黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167.
|
黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030.
|
李嘉靖, 王浩, 王睿, 2022. 基于机器学习模型的福州地区滑坡易发性评价. 水利与建筑工程学报, 20(2): 146-152.
|
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
|
刘坚, 李树林, 陈涛, 2018. 基于优化随机森林模型的滑坡易发性评价. 武汉大学学报(信息科学版), 43(7): 1085-1091.
|
盛明强, 刘梓轩, 张晓晴, 等, 2021. 基于频率比联接法和支持向量机的滑坡易发性预测. 科学技术与工程, 21(25): 10620-10628.
|
田乃满, 兰恒星, 伍宇明, 等, 2020. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比. 地球信息科学学报, 22(12): 2304-2316.
|
王佳佳, 殷坤龙, 肖莉丽, 2014. 基于GIS和信息量的滑坡灾害易发性评价: 以三峡库区万州区为例. 岩石力学与工程学报, 33(4): 797-808.
|
王倩, 薛云, 张维, 等, 2021. 基于支持向量机的滑坡易发性评价. 湖南城市学院学报(自然科学版), 30(1): 22–28.
|
谢文涌, 柴琴琴, 甘勇辉, 等, 2020. 基于多特征提取和Stacking集成学习的金线莲品系分类. 农业工程学报, 36(14): 203-210.
|
徐继伟, 杨云, 2018. 集成学习方法: 研究综述. 云南大学学报(自然科学版), 40(6): 1082-1092.
|
徐胜华, 刘纪平, 王想红, 等, 2020. 熵指数融入支持向量机的滑坡灾害易发性评价方法: 以陕西省为例. 武汉大学学报(信息科学版), 45(8): 1214-1222.
|
杨硕, 李德营, 严亮轩, 等, 2021. 基于随机森林模型的乌江高陡岸坡滑坡地质灾害易发性评价. 安全与环境工程, 28(4): 131-138.
|
杨永刚, 殷坤龙, 赵海燕, 等, 2019. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划. 地质科技情报, 38(6): 189-197.
|
殷坤龙, 朱良峰, 2001. 滑坡灾害空间区划及GIS应用研究. 地学前缘, 8(2): 279-284.
|
张俊, 殷坤龙, 王佳佳, 等, 2016. 三峡库区万州区滑坡灾害易发性评价研究. 岩石力学与工程学报, 35(2): 284-296.
|
张岩岩, 文海家, 麻超超, 等, 2018. 基于多源数据的蔡家坝特大型滑坡成因机制研究及稳定性评价. 岩石力学与工程学报, 37(9): 2048-2063.
|
赵冬梅, 谢家康, 王闯, 等, 2022. 基于Bagging集成学习的电力系统暂态稳定在线评估. 电力系统保护与控制, 50(8): 1-10.
|
周超, 殷坤龙, 曹颖, 等, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071
|
周卫华, 翟晓风, 谭皓威, 2022. 基于XGBoost的上市公司财务舞弊预测模型研究. 数量经济技术经济研究, 39(7): 176-196.
|