Citation: | Wang Lijuan, Meng Mei, He Sheng, Zheng Wang, Sun Ruoyu, Zhang Yaorong, Zhang Ke, Cai Hongming, Chen Jiubin, 2023. Progresses in Study of Mercury Isotopic Compositions in the Ocean. Earth Science, 48(7): 2778-2806. doi: 10.3799/dqkx.2022.455 |
Achá, D., Hintelmann, H., Yee, J., 2011. Importance of Sulfate Reducing Bacteria in Mercury Methylation and Demethylation in Periphyton from Bolivian Amazon Region. Chemosphere, 82(6): 911-916. https://doi.org/10.1016/j.chemosphere.2010.10.050
|
Acquavita, A., Covelli, S., Emili, A., et al., 2012. Mercury in the Sediments of the Marano and Grado Lagoon (Northern Adriatic Sea): Sources, Distribution and Speciation. Estuarine, Coastal and Shelf Science, 113: 20-31. https://doi.org/10.1016/j.ecss.2012.02.012
|
Afonso, C., Lourenço, H. M., Dias, A., et al., 2007. Contaminant Metals in Black Scabbard Fish (Aphanopus Carbo) Caught off Madeira and the Azores. Food Chemistry, 101(1): 120-125. https://doi.org/10.1016/j.foodchem.2006.01.030
|
Aksentov, K. I., Sattarova, V. V., 2020. Mercury Geochemistry of Deep-Sea Sediment Cores from the Kuril Area, Northwest Pacific. Progress in Oceanography, 180: 102235. https://doi.org/10.1016/j.pocean.2019.102235
|
Aksentov, K. I., Astakhov, A. S., Ivanov, M. V., et al., 2021. Assessment of Mercury Levels in Modern Sediments of the East Siberian Sea. Marine Pollution Bulletin, 168: 112426. https://doi.org/10.1016/j.marpolbul.2021.112426
|
Amos, H. M., Jacob, D. J., Kocman, D., et al., 2014. Global Biogeochemical Implications of Mercury Discharges from Rivers and Sediment Burial. Environmental Science & Technology, 48(16): 9514-9522. https://doi.org/10.1021/es502134t
|
Amyot, M., Gill, G. A., Morel, F. M. M., 1997. Production and Loss of Dissolved Gaseous Mercury in Coastal Seawater. Environmental Science & Technology, 31(12): 3606-3611. https://doi.org/10.1021/es9703685
|
Anbar, A. D., Rouxel, O., 2007. Metal Stable Isotopes in Paleoceanography. Annual Review of Earth and Planetary Sciences, 35: 717-746. https://doi.org/10.1146/annurev.earth.34.031405.125029
|
Azaroff, A., Tessier, E., Deborde, J., et al., 2019. Mercury and Methylmercury Concentrations, Sources and Distribution in Submarine Canyon Sediments (Capbreton, SW France): Implications for the Net Methylmercury Production. Science of the Total Environment, 673: 511-521. https://doi.org/10.1016/j.scitotenv.2019.04.111
|
Balogh, S. J., Tsui, M. T. K., Blum, J. D., et al., 2015. Tracking the Fate of Mercury in the Fish and Bottom Sediments of Minamata Bay, Japan, Using Stable Mercury Isotopes. Environmental Science & Technology, 49(9): 5399-5406. https://doi.org/10.1021/acs.est.5b00631
|
Barkay, T., Poulain, A. J., 2007. Mercury (Micro)Biogeochemistry in Polar Environments. FEMS Microbiology Ecology, 59(2): 232-241. https://doi.org/10.1111/j.1574-6941.2006.00246.x
|
Beldowski, J., Pempkowiak, J., 2009. Mercury Concentration and Solid Phase Speciation Changes in the Course of Early Diagenesis in Marine Coastal Sediments (Southern Baltic Sea). Marine and Freshwater Research, 60. (7): 745-757. https://doi.org/10.1071/MF08060
|
Bergquist, B. A., Blum, J. D., 2007. Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems. Science, 318(5849): 417-420. https://doi.org/10.1126/science.1148050
|
Bergquist, B. A., Blum, J. D., 2009. The Odds and Evens of Mercury Isotopes: Applications of Mass-Dependent and Mass-Independent Isotope Fractionation. Elements, 5(6): 353-357. https://doi.org/10.2113/gselements.5.6.353
|
Biswas, A., Blum, J. D., Bergquist, B. A., et al., 2008. Natural Mercury Isotope Variation in Coal Deposits and Organic Soils. Environmental Science & Technology, 42(22): 8303-8309. https://doi.org/10.1021/es801444b
|
Black, F. J., Paytan, A., Knee, K. L., et al., 2009. Submarine Groundwater Discharge of Total Mercury and Monomethylmercury to Central California Coastal Waters. Environmental Science & Technology, 43(15): 5652-5659. https://doi.org/10.1021/es900539c
|
Bloom, N. S., Preus, E., Katon, J., et al., 2003. Selective Extractions to Assess the Biogeochemically Relevant Fractionation of Inorganic Mercury in Sediments and Soils. Analytica Chimica Acta, 479(2): 233-248. https://doi.org/10.1016/S0003-2670(02)01550-7
|
Blum, J. D., 2012. Applications of Stable Mercury Isotopes to Biogeochemistry. Springer, Berlin, 229-245. https://doi.org/10.1007/978-3-642-10637-8_12
|
Blum, J. D., Drazen, J. C., Johnson, M. W., et al., 2020. Mercury Isotopes Identify near-Surface Marine Mercury in Deep-Sea Trench Biota. PNAS, 117(47): 29292-29298. https://doi.org/10.1073/pnas.2012773117
|
Blum, J. D., Johnson, M. W., 2017. Recent Developments in Mercury Stable Isotope Analysis. Reviews in Mineralogy and Geochemistry, 82(1): 733-757. https://doi.org/10.2138/rmg.2017.82.17
|
Blum, J. D., Popp, B. N., Drazen, J. C., et al., 2013. Methylmercury Production below the Mixed Layer in the North Pacific Ocean. Nature Geoscience, 6(10): 879-884. https://doi.org/10.1038/ngeo1918
|
Blum, J. D., Sherman, L. S., Johnson, M. W., 2014. Mercury Isotopes in Earth and Environmental Sciences. Annual Review of Earth and Planetary Sciences, 42(1): 249-269. https://doi.org/10.1146/annurev-earth-050212-124107
|
Blum, J. E., Bartha, R., 1980. Effect of Salinity on Methylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 25(1): 404-408. https://doi.org/10.1007/BF01985546
|
Bone, S. E., Charette, M. A., Lamborg, C. H., et al., 2007. Has Submarine Groundwater Discharge been Overlooked as a Source of Mercury to Coastal Waters? Environmental Science & Technology, 41(9): 3090-3095. https://doi.org/10.1021/es0622453
|
Bonsignore, M., Manta, D. S., Barsanti, M., et al., 2020. Mercury Isotope Signatures in Sediments and Marine Organisms as Tracers of Historical Industrial Pollution. Chemosphere, 258: 127435. https://doi.org/10.1016/j.chemosphere.2020.127435
|
Bonsignore, M., Tamburrino, S., Oliveri, E., et al., 2015. Tracing Mercury Pathways in Augusta Bay (Southern Italy) by Total Concentration and Isotope Determination. Environmental Pollution, 205: 178-185. https://doi.org/10.1016/j.envpol.2015.05.033
|
Bowman, K. L., Hammerschmidt, C. R., Lamborg, C. H., et al., 2015. Mercury in the North Atlantic Ocean: The U. S. Geotraces Zonal and Meridional Sections. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 116: 251-261. https://doi.org/10.1016/j.dsr2.2014.07.004
|
Braune, B., Chételat, J., Amyot, M., et al., 2015. Mercury in the Marine Environment of the Canadian Arctic: Review of Recent Findings. Science of the Total Environment, 509-510: 67-90. https://doi.org/10.1016/j.scitotenv.2014.05.133
|
Brocza, F. M., Biester, H., Richard, J. H., et al., 2019. Mercury Isotope Fractionation in the Subsurface of a Hg(Ⅱ) Chloride-Contaminated Industrial Legacy Site. Environmental Science & Technology, 53(13): 7296-7305. https://doi.org/10.1021/acs.est.9b00619
|
Buck, C. S., Hammerschmidt, C. R., Bowman, K. L., et al., 2015. Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U. S. Estuaries. Environmental Science & Technology, 49(24): 13992-13999. https://doi.org/10.1021/acs.est.5b03538
|
Burger, J., Gochfeld, M., 2013. Selenium and Mercury Molar Ratios in Commercial Fish from New Jersey and Illinois: Variation within Species and Relevance to Risk Communication. Food and Chemical Toxicology, 57: 235-245. https://doi.org/10.1016/j.fct.2013.03.021
|
Celo, V., Lean, D. R., Scott, S. L., 2006. Abiotic Methylation of Mercury in the Aquatic Environment. Science of the Total Environment, 368(1): 126-137. https://doi.org/10.1016/j.scitotenv.2005.09.043
|
Chakraborty, P., Raghunadh Babu, P. V., Vudamala, K., et al., 2014. Mercury Speciation in Coastal Sediments from the Central East Coast of India by Modified BCR Method. Marine Pollution Bulletin, 81(1): 282-288. https://doi.org/10.1016/j.marpolbul.2013.12.054
|
Chakraborty, P., Vudamala, K., Coulibaly, M., et al., 2015. Reduction of Mercury (Ⅱ) by Humic Substances—Influence of pH, Salinity of Aquatic System. Environmental Science and Pollution Research, 22(14): 10529-10538. https://doi.org/10.1007/s11356-015-4258-4
|
Chandan, P., Ghosh, S., Bergquist, B. A., 2015. Mercury Isotope Fractionation during Aqueous Photoreduction of Monomethylmercury in the Presence of Dissolved Organic Matter. Environmental Science & Technology, 49(1): 259-267. https://doi.org/10.1021/es5034553
|
Chen, J., Pehkonen, S. O., Lin, C. J., 2003. Degradation of Monomethylmercury Chloride by Hydroxyl Radicals in Simulated Natural Waters. Water Research, 37(10): 2496-2504. https://doi.org/10.1016/S0043-1354(03)00039-3
|
Chen, J. B., Hintelmann, H., Feng, X. B., et al., 2012. Unusual Fractionation of Both Odd and Even Mercury Isotopes in Precipitation from Peterborough, on, Canada. Geochimica et Cosmochimica Acta, 90: 33-46. https://doi.org/10.1016/j.gca.2012.05.005
|
Cheng, J. P., Gao, L. L., Zhao, W. C., et al., 2009. Mercury Levels in Fisherman and Their Household Members in Zhoushan, China: Impact of Public Health. Science of the Total Environment, 407(8): 2625-2630. https://doi.org/10.1016/j.scitotenv.2009.01.032
|
Chouvelon, T., Cresson, P., Bouchoucha, M., et al., 2018. Oligotrophy as a Major Driver of Mercury Bioaccumulation in Medium- to High-Trophic Level Consumers: A Marine Ecosystem-Comparative Study. Environmental Pollution, 233: 844-854. https://doi.org/10.1016/j.envpol.2017.11.015
|
Chouvelon, T., Spitz, J., Caurant, F., et al., 2012. Enhanced Bioaccumulation of Mercury in Deep-Sea Fauna from the Bay of Biscay (North-East Atlantic) in Relation to Trophic Positions Identified by Analysis of Carbon and Nitrogen Stable Isotopes. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 65: 113-124. https://doi.org/10.1016/j.dsr.2012.02.010
|
Ci, Z. J., Wang, C. J., Wang, Z. W., et al., 2015. Elemental Mercury (Hg(0)) in Air and Surface Waters of the Yellow Sea during Late Spring and Late Fall 2012: Concentration, Spatial-Temporal Distribution and Air/Sea Flux. Chemosphere, 119: 199-208. https://doi.org/10.1016/j.chemosphere.2014.05.064
|
Ci, Z. J., Zhang, X. S., Yin, Y. G., et al., 2016. Mercury Redox Chemistry in Waters of the Eastern Asian Seas: From Polluted Coast to Clean Open Ocean. Environmental Science & Technology, 50(5): 2371-2380. https://doi.org/10.1021/acs.est.5b05372
|
Compeau, G. C., Bartha, R., 1987. Effect of Salinity on Mercury-Methylating Activity of Sulfate-Reducing Bacteria in Estuarine Sediments. Applied and Environmental Microbiology, 53(2): 261-265. https://doi.org/10.1128/aem.53.2.261-265.1987
|
Correa, L., Rea, L. D., Bentzen, R., et al., 2014. Assessment of Mercury and Selenium Tissular Concentrations and Total Mercury Body Burden in 6 Steller Sea Lion Pups from the Aleutian Islands. Marine Pollution Bulletin, 82(1-2): 175-182. https://doi.org/10.1016/j.marpolbul.2014.02.022
|
Cossa, D., Averty, B., Pirrone, N., 2009. The Origin of Methylmercury in Open Mediterranean Waters. Limnology and Oceanography, 54(3): 837-844. https://doi.org/10.4319/lo.2009.54.3.0837
|
Cossa, D., Heimburger, L. E., Lannuzel, D., et al., 2011. Mercury in the Southern Ocean. Geochimica et Cosmochimica Acta, 75(14): 4037-4052. https://doi.org/10.1016/j.gca.2011.05.001
|
Cossa, D., Knoery, J., Bănaru, D., et al., 2022. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. Environmental Science & Technology, 56(7): 3840-3862. https://doi.org/10.1021/acs.est.1c03044
|
Cossa, D., Martin, J. M., Takayanagi, K., et al., 1997. The Distribution and Cycling of Mercury Species in the Western Mediterranean. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 44(3-4): 721-740. https://doi.org/10.1016/S0967-0645(96)00097-5
|
Cossa, D., Mucci, A., Guédron, S., et al., 2021. Mercury Accumulation in the Sediment of the Western Mediterranean Abyssal Plain: A Reliable Archive of the Late Holocene. Geochimica et Cosmochimica Acta, 309: 1-15. https://doi.org/10.1016/j.gca.2021.06.014
|
Covelli, S., Faganeli, J., Horvat, M., et al., 1999. Porewater Distribution and Benthic Flux Measurements of Mercury and Methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuarine, Coastal and Shelf Science, 48(4): 415-428. https://doi.org/10.1006/ecss.1999.0466
|
Cox, M. E., McMurtry, G. M., 1981. Vertical Distribution of Mercury in Sediments from the East Pacific Rise. Nature, 289(5800): 789-792. https://doi.org/10.1038/289789a0
|
Criss, R. E., 1999. Principles of Stable Isotope Distribution. Oxford University Press, New York, 264. https://doi.org/10.1093/oso/9780195117752.001.0001.
|
Crowther, E. R., Demers, J. D., Blum, J. D., et al., 2021. Use of Sequential Extraction and Mercury Stable Isotope Analysis to Assess Remobilization of Sediment-Bound Legacy Mercury. Environmental Science: Processes & Impacts, 23(5): 756-775. https://doi.org/10.1039/D1EM00019E
|
Demers, J. D., Blum, J. D., Brooks, S. C., et al., 2018. Hg Isotopes Reveal in-Stream Processing and Legacy Inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Environmental Science: Processes & Impacts, 20(4): 686-707. https://doi.org/10.1039/C7EM00538E
|
Depew, D. C., Basu, N., Burgess, N. M., et al., 2012. Toxicity of Dietary Methylmercury to Fish: Derivation of Ecologically Meaningful Threshold Concentrations. Environmental Toxicology and Chemistry, 31(7): 1536-1547. https://doi.org/10.1002/etc.1859
|
Donovan, P. M., Blum, J. D., Yee, D., et al., 2013. An Isotopic Record of Mercury in San Francisco Bay Sediment. Chemical Geology, 349-350: 87-98. https://doi.org/10.1016/j.chemgeo.2013.04.017
|
Engle, M. A., Gustin, M. S., Goff, F., et al., 2006. Atmospheric Mercury Emissions from Substrates and Fumaroles Associated with Three Hydrothermal Systems in the Western United States. Journal of Geophysical Research: Atmospheres, 111(D17). https://doi.org/10.1029/2005JD006563
|
Estrade, N., Carignan, J., Sonke, J. E., et al., 2009. Mercury Isotope Fractionation during Liquid-Vapor Evaporation Experiments. Geochimica et Cosmochimica Acta, 73(10): 2693-2711. https://doi.org/10.1016/j.gca.2009.01.024
|
Feng, X. B., Yin, R. S., Yu, B., et al., 2015. A Review of Hg Isotope Geochemistry. Earth Science Frontiers, 22(5): 124-135 (in Chinese with English abstract).
|
Foucher, D., Hintelmann, H., 2006. High-Precision Measurement of Mercury Isotope Ratios in Sediments Using Cold-Vapor Generation Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Analytical and Bioanalytical Chemistry, 384(7): 1470-1478. https://doi.org/10.1007/s00216-006-0373-x
|
Foucher, D., Hintelmann, H., Al, T. A., et al., 2013. Mercury Isotope Fractionation in Waters and Sediments of the Murray Brook Mine Watershed (New Brunswick, Canada): Tracing Mercury Contamination and Transformation. Chemical Geology, 336: 87-95. https://doi.org/10.1016/j.chemgeo.2012.04.014
|
Fu, L. W., Yu, F., Huan, Z., et al., 2020. Aqua Regia Digestion cannot Completely Extract Hg from Biochar: A Synchrotron-Based Study. Environmental Pollution, 265: 115002. https://doi.org/10.1016/j.envpol.2020.115002
|
Fu, X. W., Feng, X. B., Zhang, G., et al., 2010. Mercury in the Marine Boundary Layer and Seawater of the South China Sea: Concentrations, Sea/Air Flux, and Implication for Land Outflow. Journal of Geophysical Research: Atmospheres, 115(D6): D06303. https://doi.org/10.1029/2009jd012958
|
Gantner, N., Hintelmann, H., Zheng, W., et al., 2009. Variations in Stable Isotope Fractionation of Hg in Food Webs of Arctic Lakes. Environmental Science & Technology, 43(24): 9148-9154. https://doi.org/10.1021/es901771r
|
Gårdfeldt, K., Sommar, J., Ferrara, R., et al., 2003. Evasion of Mercury from Coastal and Open Waters of the Atlantic Ocean and the Mediterranean Sea. Atmospheric Environment, 37(1): 73-84. https://doi.org/10.1016/S1352-2310(03)00238-3
|
Gehrke, G. E., Blum, J. D., Meyers, P. A., 2009. The Geochemical Behavior and Isotopic Composition of Hg in a Mid-Pleistocene Western Mediterranean Sapropel. Geochimica et Cosmochimica Acta, 73(6): 1651-1665. https://doi.org/10.1016/j.gca.2008.12.012
|
Gehrke, G. E., Blum, J. D., Slotton, D. G., et al., 2011. Mercury Isotopes Link Mercury in San Francisco Bay Forage Fish to Surface Sediments. Environmental Science & Technology, 45(4): 1264-1270. https://doi.org/10.1021/es103053y
|
Ghosh, S., Schauble, E. A., Lacrampe Couloume, G., et al., 2013. Estimation of Nuclear Volume Dependent Fractionation of Mercury Isotopes in Equilibrium Liquid-Vapor Evaporation Experiments. Chemical Geology, 336: 5-12. https://doi.org/10.1016/j.chemgeo.2012.01.008
|
Gilmour, C. C., Henry, E. A., Mitchell, R., 1992. Sulfate Stimulation of Mercury Methylation in Freshwater Sediments. Environmental Science & Technology, 26(11): 2281-2287. https://doi.org/10.1021/es00035a029
|
Gilmour, C. C., Podar, M., Bullock, A. L., et al., 2013. Mercury Methylation by Novel Microorganisms from New Environments. Environmental Science & Technology, 47(20): 11810-11820. https://doi.org/10.1021/es403075t
|
Gionfriddo, C. M., Tate, M. T., Wick, R. R., et al., 2016. Microbial Mercury Methylation in Antarctic Sea Ice. Nature Microbiology, 1(10): 16127. https://doi.org/10.1038/nmicrobiol.2016.127
|
Gleason, J. D., Blum, J. D., Moore, T. C., et al., 2017. Sources and Cycling of Mercury in the Paleo Arctic Ocean from Hg Stable Isotope Variations in Eocene and Quaternary Sediments. Geochimica et Cosmochimica Acta, 197(16): 245-262. https://doi.org/10.1016/j.gca.2016.10.033
|
Gobeil, C., MacDonald, R. W., Smith, J. N., 1999. Mercury Profiles in Sediments of the Arctic Ocean Basins. Environmental Science & Technology, 33(23): 4194-4198. https://doi.org/10.1021/es990471p
|
Gratz, L. E., Keeler, G. J., Blum, J. D., et al., 2010. Isotopic Composition and Fractionation of Mercury in Great Lakes Precipitation and Ambient Air. Environmental Science & Technology, 44(20): 7764-7770. https://doi.org/10.1021/es100383w
|
Green-Ruiz, C., 2009. Effect of Salinity and Temperature on the Adsorption of Hg(Ⅱ) from Aqueous Solutions by a Ca-Montmorillonite. Environmental Technology, 30(1): 63-68. https://doi.org/10.1080/09593330802503859
|
Grigg, A. R. C., Kretzschmar, R., Gilli, R. S., et al., 2018. Mercury Isotope Signatures of Digests and Sequential Extracts from Industrially Contaminated Soils and Sediments. Science of the Total Environment, 636(22): 1344-1354. https://doi.org/10.1016/j.scitotenv.2018.04.261
|
Gu, B. H., Bian, Y. R., Miller, C. L., et al., 2011. Mercury Reduction and Complexation by Natural Organic Matter in Anoxic Environments. PNAS, 108(4): 1479-1483. https://doi.org/10.1073/pnas.1008747108
|
Gworek, B., Bemowska-Kałabun, O., Kijeńska, M., et al., 2016. Mercury in Marine and Oceanic Waters—A Review. Water, Air, & Soil Pollution, 227(10): 371. https://doi.org/10.1007/s11270-016-3060-3
|
Hassan, H., Elezz, A. A., Abuasali, M., et al., 2019. Baseline Concentrations of Mercury Species within Sediments from Qatar's Coastal Marine Zone. Marine Pollution Bulletin, 142: 595-602. https://doi.org/10.1016/j.marpolbul.2019.04.022
|
Heimbürger, L. E., Sonke, J. E., Cossa, D., et al., 2015. Shallow Methylmercury Production in the Marginal Sea Ice Zone of the Central Arctic Ocean. Scientific Reports, 5: 10318. https://doi.org/10.1038/srep10318
|
Heyes, A., Mason, R. P., Kim, E. H., et al., 2006. Mercury Methylation in Estuaries: Insights from Using Measuring Rates Using Stable Mercury Isotopes. Marine Chemistry, 102(1-2): 134-147. https://doi.org/10.1016/j.marchem.2005.09.018
|
Hilgendag, I. R., Swanson, H. K., Lewis, C. W., et al., 2022. Mercury Biomagnification in Benthic, Pelagic, and Benthopelagic Food Webs in an Arctic Marine Ecosystem. Science of the Total Environment, 841: 156424. https://doi.org/10.1016/j.scitotenv.2022.156424
|
Hintelmann, H., Zheng, W., 2011. Tracking Geochemical Transformations and Transport of Mercury through Isotope Fractionation. In: Liu, G. L., Cai, Y., O'Driscoll, N., eds., Environmental Chemistry and Toxicology of Mercury. John Wiley & Sons Inc., Hoboken, 293-327. https://doi.org/10.1002/9781118146644.ch9
|
Hollweg, T. A., Gilmour, C. C., Mason, R. P., 2009. Methylmercury Production in Sediments of Chesapeake Bay and the Mid-Atlantic Continental Margin. Marine Chemistry, 114(3-4): 86-101. https://doi.org/10.1016/j.marchem.2009.04.004
|
Hollweg, T. A., Gilmour, C. C., Mason, R. P., 2010. Mercury and Methylmercury Cycling in Sediments of the Mid-Atlantic Continental Shelf and Slope. Limnology and Oceanography, 55(6): 2703-2722. https://doi.org/10.4319/lo.2010.55.6.2703
|
Ikemoto, T., Kunito, T., Tanaka, H., et al., 2004. Detoxification Mechanism of Heavy Metals in Marine Mammals and Seabirds: Interaction of Selenium with Mercury, Silver, Copper, Zinc, and Cadmium in Liver. Archives of Environmental Contamination and Toxicology, 47(3): 402-413. https://doi.org/10.1007/s00244-004-3188-9
|
Janssen, S. E., Schaefer, J. K., Barkay, T., et al., 2016. Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate- Reducing Bacteria. Environmental Science & Technology, 50(15): 8077-8083. https://doi.org/10.1021/acs.est.6b00854
|
Jeong, D. H., Jeong, W., Baeg, S., et al., 2021. Datasets on the Spatial Distribution of Mercury and Its Controlling Factors in the Yellow Sea. Data Brief, 35: 106792. https://doi.org/10.1016/j.dib.2021.106792
|
Jeremiason, J. D., Portner, J. C., Aiken, G. R., et al., 2015. Photoreduction of Hg(Ⅱ) and Photodemethylation of Methylmercury: The Key Role of Thiol Sites on Dissolved Organic Matter. Environmental Science: Processes & Impacts, 17(11): 1892-1903. https://doi.org/10.1039/C5EM00305A
|
Jiang, T., Skyllberg, U., Björn, E., et al., 2017. Characteristics of Dissolved Organic Matter (DOM) and Relationship with Dissolved Mercury in Xiaoqing River-Laizhou Bay Estuary, Bohai Sea, China. Environmental Pollution, 223(6): 19-30. https://doi.org/10.1016/j.envpol.2016.12.006
|
Jiménez-Moreno, M., Perrot, V., Epov, V. N., et al., 2013. Chemical Kinetic Isotope Fractionation of Mercury during Abiotic Methylation of Hg(Ⅱ) by Methylcobalamin in Aqueous Chloride Media. Chemical Geology, 336: 26-36. https://doi.org/10.1016/j.chemgeo.2012.08.029
|
Jin, H. F., Liebezeit, G., 2013. Distribution of Total Mercury in Coastal Sediments from Jade Bay and Its Catchment, Lower Saxony, Germany. Journal of Soils and Sediments, 13(2): 441-449. https://doi.org/10.1007/s11368-012-0626-6
|
Jiskra, M., Heimbürger-Boavida, L. E., Desgranges, M. M., et al., 2021. Mercury Stable Isotopes Constrain Atmospheric Sources to the Ocean. Nature, 597(7878): 678-682. https://doi.org/10.1038/s41586-021-03859-8
|
Jiskra, M., Wiederhold, J. G., Bourdon, B., et al., 2012. Solution Speciation Controls Mercury Isotope Fractionation of Hg(Ⅱ) Sorption to Goethite. Environmental Science & Technology, 46(12): 6654-6662. https://doi.org/10.1021/es3008112
|
Jung, S., Kwon, S. Y., Li, M. L., et al., 2022. Elucidating Sources of Mercury in the West Coast of Korea and the Chinese Marginal Seas Using Mercury Stable Isotopes. Science of the Total Environment, 814: 152598. https://doi.org/10.1016/j.scitotenv.2021.152598
|
Kannan, K., Falandysz, J., 1998. Speciation and Concentrations of Mercury in Certain Coastal Marine Sediments. Water, Air, and Soil Pollution, 103(1-4): 129-136. https://doi.org/10.1023/A:1004967112178
|
Kim, E., Noh, S., Lee, Y. G., et al., 2014. Mercury and Methylmercury Flux Estimation and Sediment Distribution in an Industrialized Urban Bay. Marine Chemistry, 158: 59-68. https://doi.org/10.1016/j.marchem.2013.11.004
|
Kim, H., Lee, K., Lim, D. I., et al., 2019. Increase in Anthropogenic Mercury in Marginal Sea Sediments of the Northwest Pacific Ocean. Science of the Total Environment, 654: 801-810. https://doi.org/10.1016/j.scitotenv.2018.11.076
|
Kim, J., Lim, D., Jeong, D., et al., 2022. Mercury (Hg) Geochemistry of Mid-Ocean Ridge Sediments on the Central Indian Ridge: Chemical Forms and Isotopic Composition. Chemical Geology, 604: 120942. https://doi.org/10.1016/j.chemgeo.2022.120942
|
Kirk, J. L., Lehnherr, I., Andersson, M., et al., 2012. Mercury in Arctic Marine Ecosystems: Sources, Pathways and Exposure. Environmental Research, 119: 64-87. https://doi.org/10.1016/j.envres.2012.08.012
|
Kita, I., Yamashita, T., Chiyonobu, S., et al., 2016. Mercury Content in Atlantic Sediments as a New Indicator of the Enlargement and Reduction of Northern Hemisphere Ice Sheets. Journal of Quaternary Science, 31(3): 167-177. https://doi.org/10.1002/jqs.2854
|
Koenig, S., Solé, M., Fernández-Gómez, C., et al., 2013. New Insights into Mercury Bioaccumulation in Deep-Sea Organisms from the NW Mediterranean and Their Human Health Implications. Science of the Total Environment, 442: 329-335. https://doi.org/10.1016/j.scitotenv.2012.10.036
|
Kojadinovic, J., Potier, M., Le Corre, M., et al., 2007. Bioaccumulation of Trace Elements in Pelagic Fish from the Western Indian Ocean. Environmental Pollution, 146(2): 548-566. https://doi.org/10.1016/j.envpol.2006.07.015
|
Koster Van Groos, P. G., Esser, B. K., Williams, R. W., et al., 2014. Isotope Effect of Mercury Diffusion in Air. Environmental Science & Technology, 48(1): 227-233. https://doi.org/10.1021/es4033666
|
Kritee, K., Barkay, T., Blum, J. D., 2009. Mass Dependent Stable Isotope Fractionation of Mercury during Mer Mediated Microbial Degradation of Monomethylmercury. Geochimica et Cosmochimica Acta, 73(5): 1285-1296. https://doi.org/10.1016/j.gca.2008.11.038
|
Kritee, K., Blum, J. D., Barkay, T., 2008. Mercury Stable Isotope Fractionation during Reduction of Hg(Ⅱ) by Different Microbial Pathways. Environmental Science & Technology, 42(24): 9171-9177. https://doi.org/10.1021/es801591k
|
Kritee, K., Blum, J. D., Johnson, M. W., et al., 2007. Mercury Stable Isotope Fractionation during Reduction of Hg(Ⅱ) to Hg(0) by Mercury Resistant Microorganisms. Environmental Science & Technology, 41(6): 1889-1895. https://doi.org/10.1021/es062019t
|
Kritee, K., Motta, L. C., Blum, J. D., et al., 2018. Photomicrobial Visible Light-Induced Magnetic Mass Independent Fractionation of Mercury in a Marine Microalga. ACS Earth and Space Chemistry, 2(5): 432-440. https://doi.org/10.1021/acsearthspacechem.7b00056
|
Kwasigroch, U., Bełdowska, M., Jędruch, A., et al., 2021. Distribution and Bioavailability of Mercury in the Surface Sediments of the Baltic Sea. Environmental Science and Pollution Research, 28(27): 35690-35708. https://doi.org/10.1007/s11356-021-13023-4
|
Kwon, S. Y., Blum, J. D., Yin, R., et al., 2020. Mercury Stable Isotopes for Monitoring the Effectiveness of the Minamata Convention on Mercury. Earth-Science Reviews, 203: 103111. https://doi.org/10.1016/j.earscirev.2020.103111
|
Lalonde, J. D., Amyot, M., Kraepiel, A. M. L., et al., 2001. Photooxidation of Hg(0) in Artificial and Natural Waters. Environmental Science & Technology, 35(7): 1367-1372. https://doi.org/10.1021/es001408z
|
Lalonde, J. D., Amyot, M., Orvoine, J., et al., 2004. Photoinduced Oxidation of Hg0(Aq) in the Waters from the St. Lawrence Estuary. Environmental Science & Technology, 38(2): 508-514. https://doi.org/10.1021/es034394g
|
Lamborg, C. H., Hammerschmidt, C. R., Bowman, K. L., 2016. An Examination of the Role of Particles in Oceanic Mercury Cycling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2081): 20150297. https://doi.org/10.1098/rsta.2015.0297
|
Laporte, J. M., Truchot, J. P., Ribeyre, F., et al., 1997. Combined Effects of Water pH and Salinity on the Bioaccumulation of Inorganic Mercury and Methylmercury in the Shore Crab Carcinus Maenas. Marine Pollution Bulletin, 34(11): 880-893. https://doi.org/10.1016/ S0025-326X(97)00059-3 doi: 10.1016/S0025-326X(97)00059-3
|
Laurier, F. J. G., Cossa, D., Beucher, C., et al., 2007. The Impact of Groundwater Discharges on Mercury Partitioning, Speciation and Bioavailability to Mussels in a Coastal Zone. Marine Chemistry, 104(3-4): 143-155. https://doi.org/10.1016/j.marchem.2006.10.010
|
Laurier, F. J. G., Mason, R. P., Gill, G. A., et al., 2004. Mercury Distributions in the North Pacific Ocean—20 Years of Observations. Marine Chemistry, 90(1-4): 3-19. https://doi.org/10.1016/j.marchem.2004.02.025
|
Lee, S. H., Suh, J. K., Lee, S. H., et al., 2005. Determination of Mercury in Tuna Fish Tissue Using Isotope Dilution-Inductively Coupled Plasma Mass Spectrometry. Microchemical Journal, 80(2): 233-236. https://doi.org/10.1016/j.microc.2004.07.007
|
Lehnherr, I., 2014. Methylmercury Biogeochemistry: A Review with Special Reference to Arctic Aquatic Ecosystems. Environmental Reviews, 22(3): 229-243. https://doi.org/10.1139/er-2013-0059
|
Lehnherr, I., St. Louis, V. L., Hintelmann, H., et al., 2011. Methylation of Inorganic Mercury in Polar Marine Waters. Nature Geoscience, 4(5): 298-302. https://doi.org/10.1038/ngeo1134
|
Li, C. H., Wang, T., Liang, H. D., et al., 2017. Progresses in Study of Hg Isotope Database. Ecology and Environmental Sciences, 26(9): 1627-1638 (in Chinese with English abstract).
|
Liang, L., Horvat, M., Li, H., et al., 2003. Determination of Mercury in Minerals by Combustion/Trap/Atomic Fluorescence Spectrometry. Journal of Analytical Atomic Spectrometry, 18(11): 1383-1385. https://doi.org/10.1039/B306603G
|
Liem-Nguyen, V., Wild, B., Gustafsson, Ö., et al., 2022. Spatial Patterns and Distributional Controls of Total and Methylated Mercury off the Lena River in the Laptev Sea Sediments. Marine Chemistry, 238(17): 104052. https://doi.org/10.1016/j.marchem.2021.104052
|
Lim, D., Kim, H., Kim, J., et al., 2020. Mercury Proxy for Hydrothermal and Submarine Volcanic Activities in the Sediment Cores of Central Indian Ridge. Marine Pollution Bulletin, 159: 111513. https://doi.org/10.1016/j.marpolbul.2020.111513
|
Lin, H. Y., Yuan, D. X., Lu, B. Y., et al., 2015. Isotopic Composition Analysis of Dissolved Mercury in Seawater with Purge and Trap Preconcentration and a Modified Hg Introduction Device for MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(2): 353-359. https://doi.org/10.1039/C4JA00242C
|
Liu, C., Chen, L. F., Gao, H. Y., et al., 2018. Distribution of Mercury Species and Their Controlling Factors in the Sediment of the East China Sea. Periodical of Ocean University of China, 48(S2): 59-66 (in Chinese with English abstract).
|
Liu, C., Chen, L. F., Liang, S. K., et al., 2020. Distribution of Total Mercury and Methylmercury and Their Controlling Factors in the East China Sea. Environmental Pollution, 258(6): 113667. https://doi.org/10.1016/j.envpol.2019.113667
|
Liu, J. H., Cao, L., Huang, W., et al., 2013. Species- and Tissue-Specific Mercury Bioaccumulation in Five Fish Species from Laizhou Bay in the Bohai Sea of China. Chinese Journal of Oceanology and Limnology, 31(3): 504-513. https://doi.org/10.1007/s00343-013-2277-x
|
Liu, J. L., Xu, X. R., Yu, S., et al., 2014. Mercury Pollution in Fish from South China Sea: Levels, Species- Specific Accumulation, and Possible Sources. Environmental Research, 131: 160-164. https://doi.org/10.1016/j.envres.2014.03.004
|
Liu, M. D., Xiao, W. J., Zhang, Q. R., et al., 2021a. Substantial Accumulation of Mercury in the Deepest Parts of the Ocean and Implications for the Environmental Mercury Cycle. PNAS, 118(51): e2102629118. https://doi.org/10.1073/pnas.2102629118
|
Liu, M. D., Zhang, Q. R., Maavara, T., et al., 2021b. Rivers as the Largest Source of Mercury to Coastal Oceans Worldwide. Nature Geoscience, 14(9): 672-677. https://doi.org/10.1038/s41561-021-00793-2
|
Liu, Y. L., Chen, J. B., Liu, J. F., et al., 2021c. Coprecipitation of Mercury from Natural Iodine-Containing Seawater for Accurate Isotope Measurement. Analytical Chemistry, 93(48): 15905-15912. https://doi.org/10.1021/acs.analchem.1c03060
|
López-Berenguer, G., Peñalver, J., Martínez-López, E., 2020. A Critical Review about Neurotoxic Effects in Marine Mammals of Mercury and Other Trace Elements. Chemosphere, 246: 125688. https://doi.org/10.1016/j.chemosphere.2019.125688
|
Lors, C., Tiffreau, C., Laboudigue, A., 2004. Effects of Bacterial Activities on the Release of Heavy Metals from Contaminated Dredged Sediments. Chemosphere, 56(6): 619-630. https://doi.org/10.1016/j.chemosphere.2004.04.009
|
Lu, X. Z., Shen, J., Guo, W., et al., 2021. Influence of Mercury Geochemistry and Volcanism on the Enrichment of Organic Matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze. Earth Science, 46(7): 2329-2340 (in Chinese with English abstract).
|
Madenjian, C. P., Janssen, S. E., Lepak, R. F., et al., 2019. Mercury Isotopes Reveal an Ontogenetic Shift in Habitat Use by Walleye in Lower Green Bay of Lake Michigan. Environmental Science & Technology Letters, 6(1): 8-13. https://doi.org/10.1021/acs.estlett.8b00592
|
Madigan, D. J., Li, M. L., Yin, R. S., et al., 2018. Mercury Stable Isotopes Reveal Influence of Foraging Depth on Mercury Concentrations and Growth in Pacific Bluefin Tuna. Environmental Science & Technology, 52(11): 6256-6264. https://doi.org/10.1021/acs.est.7b06429
|
Malinovsky, D., Latruwe, K., Moens, L., et al., 2010. Experimental Study of Mass-Independence of Hg Isotope Fractionation during Photodecomposition of Dissolved Methylmercury. Journal of Analytical Atomic Spectrometry, 25(7): 950-956. https://doi.org/10.1039/B926650J
|
Malinovsky, D., Vanhaecke, F., 2011. Mercury Isotope Fractionation during Abiotic Transmethylation Reactions. International Journal of Mass Spectrometry, 307(1-3): 214-224. https://doi.org/10.1016/j.ijms.2011.01.020
|
Marvin-Dipasquale, M., Agee, J., McGowan, C., et al., 2000. Methyl-Mercury Degradation Pathways: A Comparison among Three Mercury-Impacted Ecosystems. Environmental Science & Technology, 34(23): 4908-4916. https://doi.org/10.1021/es0013125
|
Masbou, J., Point, D., Sonke, J. E., et al., 2015. Hg Stable Isotope Time Trend in Ringed Seals Registers Decreasing Sea Ice Cover in the Alaskan Arctic. Environmental Science & Technology, 49(15): 8977-8985. https://doi.org/10.1021/es5048446
|
Masbou, J., Sonke, J. E., Amouroux, D., et al., 2018. Hg-Stable Isotope Variations in Marine Top Predators of the Western Arctic Ocean. ACS Earth and Space Chemistry, 2(5): 479-490. https://doi.org/10.1021/acsearthspacechem.8b00017
|
Mason, R. P., Choi, A. L., Fitzgerald, W. F., et al., 2012. Mercury Biogeochemical Cycling in the Ocean and Policy Implications. Environmental Research, 119: 101-117. https://doi.org/10.1016/j.envres.2012.03.013
|
Mason, R. P., Fitzgerald, W. F., 1990. Alkylmercury Species in the Equatorial Pacific. Nature, 347(6292): 457-459. https://doi.org/10.1038/347457a0
|
Mason, R. P., Fitzgerald, W. F., 1993. The Distribution and Biogeochemical Cycling of Mercury in the Equatorial Pacific Ocean. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 40(9): 1897-1924. https://doi.org/10.1016/0967-0637(93)90037-4
|
Mason, R. P., Lawson, N. M., Sheu, G. R., 2001. Mercury in the Atlantic Ocean: Factors Controlling Air-Sea Exchange of Mercury and Its Distribution in the Upper Waters. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 48(13): 2829-2853. https://doi.org/10.1016/S0967-0645(01)00020-0
|
Mason, R. P., Reinfelder, J. R., Morel, F. M. M., 1996. Uptake, Toxicity, and Trophic Transfer of Mercury in a Coastal Diatom. Environmental Science & Technology, 30(6): 1835-1845. https://doi.org/10.1021/es950373d
|
Mason, R. P., Rolfhus, K. R., Fitzgerald, W. F., 1998. Mercury in the North Atlantic. Marine Chemistry, 61(1-2): 37-53. https://doi.org/10.1016/S0304-4203(98)00006-1
|
Mason, R. P., Sheu, G. R., 2002. Role of the Ocean in the Global Mercury Cycle. Global Biogeochemical Cycles, 16(4): 40-1-40-14. https://doi.org/10.1029/2001GB001440
|
McMeans, B. C., Arts, M. T., Fisk, A. T., 2015. Impacts of Food Web Structure and Feeding Behavior on Mercury Exposure in Greenland Sharks (Somniosus Microcephalus). Science of the Total Environment, 509-510: 216-225. https://doi.org/10.1016/j.scitotenv.2014.01.128
|
Meador, J. P., Ernest, D. W., Kagley, A. N., 2005. A Comparison of the Non-Essential Elements Cadmium, Mercury, and Lead Found in Fish and Sediment from Alaska and California. Science of the Total Environment, 339(1-3): 189-205. https://doi.org/10.1016/j.scitotenv.2004.07.028
|
Meng, M., Liu, H. W., Yu, B., et al., 2021. Mercury Inputs into Eastern China Seas Revealed by Mercury Isotope Variations in Sediment Cores. Journal of Geophysical Research: Oceans, 126(8): e2020JC016891. https://doi.org/10.1029/2020JC016891
|
Meng, M., Shi, J. B., Yun, Z. J., et al., 2014. Distribution of Mercury in Coastal Marine Sediments of China: Sources and Transport. Marine Pollution Bulletin, 88(1-2): 347-353. https://doi.org/10.1016/j.marpolbul.2014.08.028
|
Meng, M., Sun, R. Y., Liu, H. W., et al., 2019. An Integrated Model for Input and Migration of Mercury in Chinese Coastal Sediments. Environmental Science & Technology, 53(5): 2460-2471. https://doi.org/10.1021/acs.est.8b06329
|
Meng, M., Sun, R. Y., Liu, H. W., et al., 2020. Mercury Isotope Variations within the Marine Food Web of Chinese Bohai Sea: Implications for Mercury Sources and Biogeochemical Cycling. Journal of Hazardous Materials, 384: 121379. https://doi.org/10.1016/j.jhazmat.2019.121379
|
Mil-Homens, M., Blum, J. D., Canario, J., et al., 2013. Tracing Anthropogenic Hg and Pb Input Using Stable Hg and Pb Isotope Ratios in Sediments of the Central Portuguese Margin. Chemical Geology, 336: 62-71. https://doi.org/10.1016/j.chemgeo.2012.02.018
|
Morel, F. M. M., Kraepiel, A. M. L., Amyot, M., 1998. The Chemical Cycle and Bioaccumulation of Mercury. Annual Review of Ecology and Systematics, 29(1): 543-566. https://doi.org/10.1146/annurev.ecolsys.29.1.543
|
Motta, L. C., Blum, J. D., Johnson, M. W., et al., 2019. Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios. Global Biogeochemical Cycles, 33(6): 777-794. https://doi.org/10.1029/2018GB006057
|
Motta, L. C., Blum, J. D., Popp, B. N., et al., 2020. Mercury Stable Isotopes in Flying Fish as a Monitor of Photochemical Degradation of Methylmercury in the Atlantic and Pacific Oceans. Marine Chemistry, 223: 103790. https://doi.org/10.1016/j.marchem.2020.103790
|
Munson, K. M., Lamborg, C. H., Boiteau, R. M., et al., 2018. Dynamic Mercury Methylation and Demethylation in Oligotrophic Marine Water. Biogeosciences, 15(21): 6451-6460. https://doi.org/10.5194/bg-15-6451-2018
|
Munson, K. M., Lamborg, C. H., Swarr, G. J., et al., 2015. Mercury Species Concentrations and Fluxes in the Central Tropical Pacific Ocean. Global Biogeochemical Cycles, 29(5): 656-676. https://doi.org/10.1002/2015gb005120
|
Nigro, M., Campana, A., Lanzillotta, E., et al., 2002. Mercury Exposure and Elimination Rates in Captive Bottlenose Dolphins. Marine Pollution Bulletin, 44(10): 1071-1075. https://doi.org/10.1016/S0025-326X(02)00159-5
|
Ogrinc, N., Hintelmann, H., Kotnik, J., et al., 2019. Sources of Mercury in Deep-Sea Sediments of the Mediterranean Sea as Revealed by Mercury Stable Isotopes. Scientific Reports, 9(1): 11626. https://doi.org/10.1038/s41598-019-48061-z
|
Ogrinc, N., Monperrus, M., Kotnik, J., et al., 2007. Distribution of Mercury and Methylmercury in Deep-Sea Surficial Sediments of the Mediterranean Sea. Marine Chemistry, 107(1): 31-48. https://doi.org/10.1016/j.marchem.2007.01.019
|
Olson, B. H., Cooper, R. C., 1974. In Situ Methylation of Mercury in Estuarine Sediment. Nature, 252(5485): 682-683. https://doi.org/10.1038/252682b0
|
Orani, A. M., Vassileva, E., Azemard, S., et al., 2020. Comparative Study on Hg Bioaccumulation and Biotransformation in Mediterranean and Atlantic Sponge Species. Chemosphere, 260: 127515. https://doi.org/10.1016/j.chemosphere.2020.127515
|
Ortiz, V. L., Mason, R. P., Ward, J. E., 2015. An Examination of the Factors Influencing Mercury and Methylmercury Particulate Distributions, Methylation and Demethylation Rates in Laboratory-Generated Marine Snow. Marine Chemistry, 177: 753-762. https://doi.org/10.1016/j.marchem.2015.07.006
|
Outridge, P. M., Mason, R. P., Wang, F., et al., 2018. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Technology, 52(20): 11466-11477. https://doi.org/10.1021/acs.est.8b01246
|
Perrot, V., Epov, V. N., Pastukhov, M. V., et al., 2010. Tracing Sources and Bioaccumulation of Mercury in Fish of Lake Baikal-Angara River Using Hg Isotopic Composition. Environmental Science & Technology, 44(21): 8030-8037. https://doi.org/10.1021/es101898e
|
Perrot, V., Pastukhov, M. V., Epov, V. N., et al., 2012. Higher Mass-Independent Isotope Fractionation of Methylmercury in the Pelagic Food Web of Lake Baikal (Russia). Environmental Science & Technology, 46(11): 5902-5911. https://doi.org/10.1021/es204572g
|
Perrot, V., Bridou, R., Pedrero, Z., et al., 2015. Identical Hg Isotope Mass Dependent Fractionation Signature during Methylation by Sulfate-Reducing Bacteria in Sulfate and Sulfate-Free Environment. Environmental Science & Technology, 49(3): 1365-1373. https://doi.org/10.1021/es5033376
|
Point, D., Sonke, J. E., Day, R. D., et al., 2011. Methylmercury Photodegradation Influenced by Sea-Ice Cover in Arctic Marine Ecosystems. Nature Geoscience, 4(3): 188-194. https://doi.org/10.1038/ngeo1049
|
Qiu, Y., Gai, P. X., Yue, F. G., et al., 2021. Stable Mercury Isotopes Revealing Photochemical Processes in the Marine Boundary Layer. Journal of Geophysical Research: Atmospheres, 126(16): e2021JD034630. https://doi.org/10.1029/2021JD034630
|
Qu, P., Pang, M., Wang, P. G., et al., 2022. Bioaccumulation of Mercury along Continuous Fauna Trophic Levels in the Yellow River Estuary and Adjacent Sea Indicated by Nitrogen Stable Isotopes. Journal of Hazardous Materials, 432(9): 128631. https://doi.org/10.1016/j.jhazmat.2022.128631
|
Queirós, J. P., Hill, S. L., Pinkerton, M., et al., 2020. High Mercury Levels in Antarctic Toothfish Dissostichus Mawsoni from the Southwest Pacific Sector of the Southern Ocean. Environmental Research, 187: 109680. https://doi.org/10.1016/j.envres.2020.109680
|
Ravichandran, M., Aiken, G. R., Reddy, M. M., et al., 1998. Enhanced Dissolution of Cinnabar (Mercuric Sulfide) by Dissolved Organic Matter Isolated from the Florida Everglades. Environmental Science & Technology, 32(21): 3305-3311. https://doi.org/10.1021/es9804058
|
Renedo, M., Point, D., Sonke, J. E., et al., 2021. ENSO Climate Forcing of the Marine Mercury Cycle in the Peruvian Upwelling Zone does not Affect Methylmercury Levels of Marine Avian Top Predators. Environmental Science & Technology, 55(23): 15754-15765. https://doi.org/10.1021/acs.est.1c03861
|
Renedo, M., Bustamante, P., Cherel, Y., et al., 2020. A "Seabird-Eye" on Mercury Stable Isotopes and Cycling in the Southern Ocean. Science of the Total Environment, 742(6): 140499. https://doi.org/10.1016/j.scitotenv.2020.140499
|
Rodríguez-González, P., Epov, V. N., Bridou, R., et al., 2009. Species-Specific Stable Isotope Fractionation of Mercury during Hg(Ⅱ) Methylation by an Anaerobic Bacteria (Desulfobulbus Propionicus) under Dark Conditions. Environmental Science & Technology, 43(24): 9183-9188. https://doi.org/10.1021/es902206j
|
Romero, M. B., Polizzi, P., Chiodi, L., et al., 2016. The Role of Metallothioneins, Selenium and Transfer to Offspring in Mercury Detoxification in Franciscana Dolphins (Pontoporia Blainvillei). Marine Pollution Bulletin, 109(1): 650-654. https://doi.org/10.1016/j.marpolbul.2016.05.012
|
Romero-Romero, S., García-Ordiales, E., Roqueñí, N., et al., 2022. Increase in Mercury and Methylmercury Levels with Depth in a Fish Assemblage. Chemosphere, 292(301): 133445. https://doi.org/10.1016/j.chemosphere.2021.133445
|
Rose, C. H., Ghosh, S., Blum, J. D., et al., 2015. Effects of Ultraviolet Radiation on Mercury Isotope Fractionation during Photo-Reduction for Inorganic and Organic Mercury Species. Chemical Geology, 405: 102-111. https://doi.org/10.1016/j.chemgeo.2015.02.025
|
Rosera, T. J., Janssen, S. E., Tate, M. T., et al., 2020. Isolation of Methylmercury Using Distillation and Anion-Exchange Chromatography for Isotopic Analyses in Natural Matrices. Analytical and Bioanalytical Chemistry, 412(3): 681-690. https://doi.org/10.1007/s00216-019-02277-0
|
Sattarova, V. V., Aksentov, K. I., 2018. Geochemistry of Mercury in Surface Sediments of the Kuril Basin of the Sea of Okhotsk, Kuril-Kamchatka Trench and Adjacent Abyssal Plain and Northwest Part of the Bering Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 154: 24-31. https://doi.org/10.1016/j.dsr2.2017.09.002
|
Schartup, A. T., Ndu, U., Balcom, P. H., et al., 2015. Contrasting Effects of Marine and Terrestrially Derived Dissolved Organic Matter on Mercury Speciation and Bioavailability in Seawater. Environmental Science & Technology, 49(10): 5965-5972. https://doi.org/10.1021/es506274x
|
Seco, J., Xavier, J. C., Bustamante, P., et al., 2020. Main Drivers of Mercury Levels in Southern Ocean Lantern Fish Myctophidae. Environmental Pollution, 264: 114711. https://doi.org/10.1016/j.envpol.2020.114711
|
Selin, N. E., 2009. Global Biogeochemical Cycling of Mercury: A Review. Annual Review of Environment and Resources, 34(1): 43-63. https://doi.org/10.1146/annurev.environ.051308.084314
|
Seller, P., Kelly, C. A., Rudd, J. W. M., et al., 1996. Photodegradation of Methylmercury in Lakes. Nature, 380(6576): 694-697. https://doi.org/10.1038/380694a0
|
Senn, D. B., Chesney, E. J., Blum, J. D., et al., 2010. Stable Isotope (N, C, Hg) Study of Methylmercury Sources and Trophic Transfer in the Northern Gulf of Mexico. Environmental Science & Technology, 44(5): 1630-1637. https://doi.org/10.1021/es902361j
|
Shan, C. Q., Liu, R. H., Shan, H. X., 2006. The Research on Releasing of Mercury from Jiaozhou Bay Offshore Sediment to Seawater. Transactions of Oceanology and Limnology, (4): 44-51 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-6482.2006.04.007
|
Shen, J., Algeo, T. J., Chen, J., et al., 2019. Mercury in Marine Ordovician/Silurian Boundary Sections of South China is Sulfide-Hosted and Non-Volcanic in Origin. Earth and Planetary Science Letters, 511: 130-140. https://doi.org/10.1016/j.epsl.2019.01.028
|
Shen, J., Feng, Q., Algeo, T. J., et al., 2020. Sedimentary Host Phases of Mercury (Hg) and Implications for Use of Hg as a Volcanic Proxy. Earth and Planetary Science Letters, 543: 116333. https://doi.org/10.1016/j.epsl.2020.116333
|
Sherman, L. S., Blum, J. D., Johnson, K. P., et al., 2010. Mass-Independent Fractionation of Mercury Isotopes in Arctic Snow Driven by Sunlight. Nature Geoscience, 3(3): 173-177. https://doi.org/10.1038/ngeo758
|
Sherman, L. S., Blum, J. D., Keeler, G. J., et al., 2012. Investigation of Local Mercury Deposition from a Coal-Fired Power Plant Using Mercury Isotopes. Environmental Science & Technology, 46(1): 382-390. https://doi.org/10.1021/es202793c
|
Sherman, L. S., Blum, J. D., Nordstrom, D. K., et al., 2009. Mercury Isotopic Composition of Hydrothermal Systems in the Yellowstone Plateau Volcanic Field and Guaymas Basin Sea-Floor Rift. Earth and Planetary Science Letters, 279(1-2): 86-96. https://doi.org/10.1016/j.epsl.2008.12.032
|
Siedlewicz, G., Korejwo, E., Szubska, M., et al., 2020. Presence of Mercury and Methylmercury in Baltic Sea Sediments, Collected in Ammunition Dumpsites. Marine Environmental Research, 162: 105158. https://doi.org/10.1016/j.marenvres.2020.105158
|
Smith, C. N., Kesler, S. E., Blum, J. D., et al., 2008. Isotope Geochemistry of Mercury in Source Rocks, Mineral Deposits and Spring Deposits of the California Coast Ranges, USA. Earth and Planetary Science Letters, 269(3-4): 399-407. https://doi.org/10.1016/j.epsl.2008.02.029
|
Smith, C. N., Kesler, S. E., Klaue, B., et al., 2005. Mercury Isotope Fractionation in Fossil Hydrothermal Systems. Geology, 33(10): 825-828. https://doi.org/10.1130/G21863.1
|
Smith, R. S., Wiederhold, J. G., Kretzschmar, R., 2015. Mercury Isotope Fractionation during Precipitation of Metacinnabar (β-HgS) and Montroydite (HgO). Environmental Science & Technology, 49(7): 4325-4334. https://doi.org/10.1021/acs.est.5b00409
|
Soerensen, A. L., Mason, R. P., Balcom, P. H., et al., 2013. Drivers of Surface Ocean Mercury Concentrations and Air-Sea Exchange in the West Atlantic Ocean. Environmental Science & Technology, 47(14): 7757-7765. https://doi.org/10.1021/es401354q
|
Stetson, S. J., Gray, J. E., Wanty, R. B., et al., 2009. Isotopic Variability of Mercury in Ore, Mine-Waste Calcine, and Leachates of Mine-Waste Calcine from Areas Mined for Mercury. Environmental Science & Technology, 43(19): 7331-7336. https://doi.org/10.1021/es9006993
|
Stoffers, P., Hannington, M., Wright, I., et al., 1999. Elemental Mercury at Submarine Hydrothermal Vents in the Bay of Plenty, Taupo Volcanic Zone, New Zealand. Geology, 27(10): 931-934. https://doi.org/10.1130/0091-7613(1999)027<0931:EMASHV>2.3.CO;2 doi: 10.1130/0091-7613(1999)027<0931:EMASHV>2.3.CO;2
|
Štrok, M., Baya, P. A., Dietrich, D., et al., 2019. Mercury Speciation and Mercury Stable Isotope Composition in Sediments from the Canadian Arctic Archipelago. Science of the Total Environment, 671(3): 655-665. https://doi.org/10.1016/j.scitotenv.2019.03.424
|
Štrok, M., Baya, P. A., Hintelmann, H., 2015. The Mercury Isotope Composition of Arctic Coastal Seawater. Comptes Rendus Geoscience, 347(7-8): 368-376. https://doi.org/10.1016/j.crte.2015.04.001
|
Štrok, M., Hintelmann, H., Dimock, B., 2014. Development of Pre-Concentration Procedure for the Determination of Hg Isotope Ratios in Seawater Samples. Analytica Chimica Acta, 851: 57-63. https://doi.org/10.1016/j.aca.2014.09.005
|
Sun, G. Y., Sommar, J., Feng, X. B., et al., 2016. Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br. Environmental Science & Technology, 50(17): 9232-9241. https://doi.org/10.1021/acs.est.6b01668
|
Sun, R. Y., Enrico, M., Heimbürger, L. E., et al., 2013a. A Double-Stage Tube Furnace—Acid-Trapping Protocol for the Pre-Concentration of Mercury from Solid Samples for Isotopic Analysis. Analytical and Bioanalytical Chemistry, 405(21): 6771-6781. https://doi.org/10.1007/s00216-013-7152-2
|
Sun, R. Y., Heimburger, L. E., Sonke, J. E., et al., 2013b. Mercury Stable Isotope Fractionation in Six Utility Boilers of Two Large Coal-Fired Power Plants. Chemical Geology, 336: 103-111. https://doi.org/10.1016/j.chemgeo.2012.10.055
|
Sun, R. Y., Yuan, J. J., Sonke, J. E., et al., 2020a. Methylmercury Produced in Upper Oceans Accumulates in Deep Mariana Trench Fauna. Nature Communications, 11(1): 3389. https://doi.org/10.1038/s41467-020-17045-3
|
Sun, X., Yin, R. S., Hu, L. M., et al., 2020b. Isotopic Tracing of Mercury Sources in Estuarine-Inner Shelf Sediments of the East China Sea. Environmental Pollution, 262: 114356. https://doi.org/10.1016/j.envpol.2020.114356
|
Sunderland, E. M., Krabbenhoft, D. P., Moreau, J. W., et al., 2009. Mercury Sources, Distribution, and Bioavailability in the North Pacific Ocean: Insights from Data and Models. Global Biogeochemical Cycles, 23(2): GB2010. https://doi.org/10.1029/2008GB003425
|
Sunderland, E. M., Mason, R. P., 2007. Human Impacts on Open Ocean Mercury Concentrations. Global Biogeochemical Cycles, 21(4): GB4022. https://doi.org/10.1029/2006GB002876
|
Them, T. R., Jagoe, C. H., Caruthers, A. H., et al., 2019. Terrestrial Sources as the Primary Delivery Mechanism of Mercury to the Oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth and Planetary Science Letters, 507: 62-72. https://doi.org/10.1016/j.epsl.2018.11.029
|
Tsui, M. T. K., Blum, J. D., Kwon, S. Y., 2020. Review of Stable Mercury Isotopes in Ecology and Biogeochemistry. Science of the Total Environment, 716: 135386. https://doi.org/10.1016/j.scitotenv.2019.135386
|
Ullrich, S. M., Tanton, T. W., Abdrashitova, S. A., 2001. Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation. Critical Reviews in Environmental Science and Technology, 31(3): 241-293. https://doi.org/10.1080/20016491089226
|
Vieira, H. C., Bordalo, M. D., Figueroa, A. G., et al., 2021. Mercury Distribution and Enrichment in Coastal Sediments from Different Geographical Areas in the North Atlantic Ocean. Marine Pollution Bulletin, 165: 112153. https://doi.org/10.1016/j.marpolbul.2021.112153
|
Voegborlo, R. B., Akagi, H., 2007. Determination of Mercury in Fish by Cold Vapour Atomic Absorption Spectrometry Using an Automatic Mercury Analyzer. Food Chemistry, 100(2): 853-858. https://doi.org/10.1016/j.foodchem.2005.09.025
|
Wagemann, R., Trebacz, E., Boila, G., et al., 1998. Methylmercury and Total Mercury in Tissues of Arctic Marine Mammals. Science of the Total Environment, 218(1): 19-31. https://doi.org/10.1016/S0048-9697(98)00192-2
|
Wang, C. J., Ci, Z. J., Wang, Z. W., et al., 2016. Air-Sea Exchange of Gaseous Mercury in the East China Sea. Environmental Pollution, 212: 535-543. https://doi.org/10.1016/j.envpol.2016.03.016
|
Wang, C. J., Wang, Z. W., Zhang, X. S., 2020. Characteristics of Mercury Speciation in Seawater and Emission Flux of Gaseous Mercury in the Bohai Sea and Yellow Sea. Environmental Research, 182(7): 109092. https://doi.org/10.1016/j.envres.2019.109092
|
Wang, R., Wang, W. X., 2010. Importance of Speciation in Understanding Mercury Bioaccumulation in Tilapia Controlled by Salinity and Dissolved Organic Matter. Environmental Science & Technology, 44(20): 7964-7969. https://doi.org/10.1021/es1011274
|
Wang, X. Y., He, C. F., Sun, R. G., et al., 2015. Releases and Methylation of Soil Mercury in Water-Level Fluctuating Zone of the Three Gorges Reservoir Region. Environmental Chemistry, 34(1): 172-177 (in Chinese with English abstract).
|
Wang, Z. F., Huang, K. J., Lu, Y. W., et al., 2021. Tracing Earth's Oxygenation Events Using Metal Stable Isotopes. Earth Science, 46(12): 4427-4451 (in Chinese with English abstract).
|
Wang, Z. H., Chen, J. B., Feng, X. B., et al., 2012. Progress in the Study of Stable Hg Isotope Geochemistry. Earth and Environment, 40(4): 599-610 (in Chinese with English abstract).
|
Watras, C. J., Morrison, K. A., Host, J. S., et al., 1995. Concentration of Mercury Species in Relationship to Other Site-Specific Factors in the Surface Waters of Northern Wisconsin Lakes. Limnology and Oceanography, 40(3): 556-565. https://doi.org/10.4319/lo.1995.40.3.0556
|
Weber, J. H., 1993. Review of Possible Paths for Abiotic Methylation of Mercury(Ⅱ) in the Aquatic Environment. Chemosphere, 26(11): 2063-2077. https://doi.org/10.1016/0045-6535(93)90032-Z
|
Whalin, L., Kim, E. H., Mason, R., 2007. Factors Influencing the Oxidation, Reduction, Methylation and Demethylation of Mercury Species in Coastal Waters. Marine Chemistry, 107(3): 278-294. https://doi.org/10.1016/j.marchem.2007.04.002
|
Whiteside, J. H., Grice, K., 2016. Biomarker Records Associated with Mass Extinction Events. Annual Review of Earth and Planetary Sciences, 44: 581-612. https://doi.org/10.1146/annurev-earth-060115-012501
|
Wiederhold, J. G., Cramer, C. J., Daniel, K., et al., 2010. Equilibrium Mercury Isotope Fractionation between Dissolved Hg(Ⅱ) Species and Thiol-Bound Hg. Environmental Science & Technology, 44(11): 4191-4197. https://doi.org/10.1029/2006GB00287610.1021/es100205t
|
Wiederhold, J. G., Skyllberg, U., Drott, A., et al., 2015. Mercury Isotope Signatures in Contaminated Sediments as a Tracer for Local Industrial Pollution Sources. Environmental Science & Technology, 49(1): 177-185. https://doi.org/10.1021/es5044358
|
Wiederhold, J. G., Smith, R. S., Siebner, H., et al., 2013. Mercury Isotope Signatures as Tracers for Hg Cycling at the New Idria Hg Mine. Environmental Science & Technology, 47(12): 6137-6145. https://doi.org/10.1021/es305245z
|
Wintle, N. J. P., Duffield, D. A., Barros (Deceased), N. B., et al., 2011. Total Mercury in Stranded Marine Mammals from the Oregon and Southern Washington Coasts. Marine Mammal Science, 27(4): E268-E278. https://doi.org/10.1111/j.1748-7692.2010.00461.x
|
Xu, W. H., Yan, W., Huang, W. X., et al., 2013. Mercury Profiles in Surface Sediments from Ten Bays along the Coast of Southern China. Marine Pollution Bulletin, 76(1-2): 394-399. https://doi.org/10.1016/j.marpolbul.2013.07.047
|
Xun, L. Y., Campbell, N. E. R., Rudd, J. W. M., 1987. Measurements of Specific Rates of Net Methyl Mercury Production in the Water Column and Surface Sediments of Acidified and Circumneutral Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 44(4): 750-757. https://doi.org/10.1139/f87-091
|
Yang, J., Kim, H., Kang, C. K., et al., 2017. Distributions and Fluxes of Methylmercury in the East/Japan Sea. Deep-Sea Research Part Ⅰ: Oceanographic Research Papers, 130: 47-54. https://doi.org/10.1016/j.dsr.2017.10.009
|
Yang, T. T., Liu, Y., Tan, S., et al., 2021. The Role of Intestinal Microbiota of the Marine Fish (Acanthopagrus Latus) in Mercury Biotransformation. Environmental Pollution, 277: 116768. https://doi.org/10.1016/j.envpol.2021.116768
|
Yang, Y. H., Kwon, S. Y., Tsui, M. T. K., et al., 2022. Ecological Traits of Fish for Mercury Biomonitoring: Insights from Compound-Specific Nitrogen and Stable Mercury Isotopes. Environmental Science & Technology, 56(15): 10808-10817. https://doi.org/10.1021/acs.est.2c02532
|
Yin, R. S., Feng, X. B., Chen, B. W., et al., 2015. Identifying the Sources and Processes of Mercury in Subtropical Estuarine and Ocean Sediments Using Hg Isotopic Composition. Environmental Science & Technology, 49(3): 1347-1355. https://doi.org/10.1021/es504070y
|
Yin, R. S., Feng, X. B., Li, X. D., et al., 2014. Trends and Advances in Mercury Stable Isotopes as a Geochemical Tracer. Trends in Environmental Analytical Chemistry, 2: 1-10. https://doi.org/10.1016/j.teac.2014.03.001
|
Yin, R. S., Feng, X. B., Shi, W. F., 2010. Application of the Stable-Isotope System to the Study of Sources and Fate of Hg in the Environment: A Review. Applied Geochemistry, 25(10): 1467-1477. https://doi.org/10.1016/j.apgeochem.2010.07.007
|
Yin, R. S., Feng, X. B., Wang, J. X., et al., 2013. Mercury Isotope Variations between Bioavailable Mercury Fractions and Total Mercury in Mercury Contaminated Soil in Wanshan Mercury Mine, SW China. Chemical Geology, 336: 80-86. https://doi.org/10.1016/j.chemgeo.2012.04.017
|
Yin, R. S., Feng, X. B., Zhang, J. J., et al., 2016. Using Mercury Isotopes to Understand the Bioaccumulation of Hg in the Subtropical Pearl River Estuary, South China. Chemosphere, 147: 173-179. https://doi.org/10.1016/j.chemosphere.2015.12.100
|
Yin, R. S., Guo, Z. G., Hu, L. M., et al., 2018. Mercury Inputs to Chinese Marginal Seas: Impact of Industrialization and Development of China. Journal of Geophysical Research: Oceans, 123(8): 5599-5611. https://doi.org/10.1029/2017jc013691
|
Yu, C. H., Xiao, W. J., Xu, Y. P., et al., 2021. Spatial-Temporal Characteristics of Mercury and Methylmercury in Marine Sediment under the Combined Influences of River Input and Coastal Currents. Chemosphere, 274: 129728. https://doi.org/10.1016/j.chemosphere.2021.129728
|
Zaferani, S., Pérez-Rodríguez, M., Biester, H., 2018. Diatom Ooze—A Large Marine Mercury Sink. Science, 361(6404): 797-800. https://doi.org/10.1126/science.aat2735
|
Zhang, T., Hsu-Kim, H., 2010. Photolytic Degradation of Methylmercury Enhanced by Binding to Natural Organic Ligands. Nature Geoscience, 3(7): 473-476. https://doi.org/10.1038/ngeo892
|
Zhang, W., Sun, G. Y., Yin, R. S., et al., 2021. Separation of Methylmercury from Biological Samples for Stable Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 36(11): 2415-2422. https://doi.org/10.1039/D1JA00236H
|
Zhang, Y., Horowitz, H., Wang, J., et al., 2019. A Coupled Global Atmosphere-Ocean Model for Air-Sea Exchange of Mercury: Insights into Wet Deposition and Atmospheric Redox Chemistry. Environmental Science & Technology, 53(9): 5052-5061. https://doi.org/10.1021/acs.est.8b06205
|
Zhang, Y. T., Sun, R. G., Ma, M., et al., 2012. Study of Inhibition Mechanism of NO3- on Photoreduction of Hg(Ⅱ) in Artificial Water. Chemosphere, 87(2): 171-176. https://doi.org/10.1016/j.chemosphere.2011.11.077
|
Zhang, Y. X., Jacob, D. J., Dutkiewicz, S., et al., 2015. Biogeochemical Drivers of the Fate of Riverine Mercury Discharged to the Global and Arctic Oceans: River Mercury in the Ocean. Global Biogeochemical Cycles, 29(6): 854-864. https://doi.org/10.1002/2015GB005124
|
Zheng, J., Yamada, M., Yoshida, S., 2011. Sensitive Iodine Speciation in Seawater by Multi-Mode Size- Exclusion Chromatography with Sector-Field ICP-MS. Journal of Analytical Atomic Spectrometry, 26(9): 1790-1795. https://doi.org/10.1039/C0JA00270D
|
Zheng, W., Demers, J. D., Lu, X., et al., 2019. Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of Thiols and Natural Organic Matter. Environmental Science & Technology, 53(4): 1853-1862. https://doi.org/10.1021/acs.est.8b05047
|
Zheng, W., Foucher, D., Hintelmann, H., 2007. Mercury Isotope Fractionation during Volatilization of Hg(0) from Solution into the Gas Phase. Journal of Analytical Atomic Spectrometry, 22(9): 1097-1104. https://doi.org/10.1039/B705677J
|
Zheng, W., Gilleaudeau, G. J., Kah, L. C., et al., 2018. Mercury Isotope Signatures Record Photic Zone Euxinia in the Mesoproterozoic Ocean. PNAS, 115(42): 10594-10599. https://doi.org/10.1073/pnas.1721733115
|
Zheng, W., Hintelmann, H., 2009. Mercury Isotope Fractionation during Photoreduction in Natural Water is Controlled by Its Hg/Doc Ratio. Geochimica et Cosmochimica Acta, 73(22): 6704-6715. https://doi.org/10.1016/j.gca.2009.08.016
|
Zheng, W., Hintelmann, H., 2010a. Isotope Fractionation of Mercury during Its Photochemical Reduction by Low-Molecular-Weight Organic Compounds. The Journal of Physical Chemistry A, 114(12): 4246-4253. https://doi.org/10.1021/jp9111348
|
Zheng, W., Hintelmann, H., 2010b. Nuclear Field Shift Effect in Isotope Fractionation of Mercury during Abiotic Reduction in the Absence of Light. The Journal of Physical Chemistry A, 114(12): 4238-4245. https://doi.org/10.1021/jp910353y
|
Zheng, W., Liang, L. Y., Gu, B. H., 2012. Mercury Reduction and Oxidation by Reduced Natural Organic Matter in Anoxic Environments. Environmental Science & Technology, 46(1): 292-299. https://doi.org/10.1021/es203402p
|
Zheng, W., Zhao, Y. Q., Sun, R. Y., et al., 2021. The Mechanism of Mercury Stable Isotope Fractionation: A Review. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1087-1110, 998 (in Chinese with English abstract).
|
Zhong, H., Wang, W. X., 2006. Metal-Solid Interactions Controlling the Bioavailability of Mercury from Sediments to Clams and Sipunculans. Environmental Science & Technology, 40(12): 3794-3799. https://doi.org/10.1021/es0523441
|
Zhu, C. W., Tao, C. H., Yin, R. S., et al., 2020. Seawater versus Mantle Sources of Mercury in Sulfide-Rich Seafloor Hydrothermal Systems, Southwest Indian Ridge. Geochimica et Cosmochimica Acta, 281: 91-101. https://doi.org/10.1016/j.gca.2020.05.008
|
冯新斌, 尹润生, 俞奔, 等, 2015. 汞同位素地球化学概述. 地学前缘, 22(5): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003004.htm
|
李春辉, 汪婷, 梁汉东, 等, 2017. 汞同位素自然库存研究进展. 生态环境学报, 26(9): 1627-1638. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201709025.htm
|
刘畅, 陈路锋, 高华阳, 等, 2018. 东海沉积物汞形态分布及控制因素. 中国海洋大学学报(自然科学版), 48(S2): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY2018S2008.htm
|
卢贤志, 沈俊, 郭伟, 等, 2021. 中上扬子地区奥陶纪‒志留纪之交火山作用对有机质富集的影响. 地球科学, 46(7): 2329-2340. doi: 10.3799/dqkx.2020.258
|
单长青, 刘汝海, 单红仙, 2006. 胶州湾近岸沉积物‒海水汞的释放研究. 海洋湖沼通报, (4): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB200604006.htm
|
王欣悦, 贺春凤, 孙荣国, 等, 2015. 三峡库区消落带土壤淹水过程中汞的释放及甲基化特征. 环境化学, 34(1): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201501023.htm
|
王振飞, 黄康俊, 路雅雯, 等, 2021. 金属稳定同位素示踪地球增氧事件. 地球科学, 46(12): 4427-4451. doi: 10.3799/dqkx.2021.088
|
王柱红, 陈玖斌, 冯新斌, 等, 2012. Hg稳定同位素地球化学研究进展. 地球与环境, 40(4): 599-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201204022.htm
|
郑旺, 赵亚秋, 孙若愚, 等, 2021. 汞的稳定同位素分馏机理. 矿物岩石地球化学通报, 40(5): 1087-1110, 998. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105010.htm
|