• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Zeng Gang, Chen Jianyao, Dong Linyao, Li Shaoheng, Jin Guangzhe, Wu Ruiqin, Fu Congsheng, 2025. Response Characteristics of Groundwater Dynamics to Ocean Tide in Volcanic Island of South China. Earth Science, 50(5): 2072-2082. doi: 10.3799/dqkx.2022.468
    Citation: Zeng Gang, Chen Jianyao, Dong Linyao, Li Shaoheng, Jin Guangzhe, Wu Ruiqin, Fu Congsheng, 2025. Response Characteristics of Groundwater Dynamics to Ocean Tide in Volcanic Island of South China. Earth Science, 50(5): 2072-2082. doi: 10.3799/dqkx.2022.468

    Response Characteristics of Groundwater Dynamics to Ocean Tide in Volcanic Island of South China

    doi: 10.3799/dqkx.2022.468
    • Received Date: 2022-08-29
      Available Online: 2025-06-06
    • Publish Date: 2025-05-25
    • Ocean tide is the dynamic basis driving the hydrodynamic changes of groundwater. In order to explore the influence of ocean tide on the groundwater dynamics in Naozhou Island, Guangdong Province, the groundwater level and salinity were used as the main indicators, and the frequency characteristics of groundwater dynamics relative to tides were analyzed by power spectrum. Moreover, the amplitude and phase of groundwater dynamics were analyzed by combining wavelet transform and cross-correlation methods. The results show follows: (1) The response of groundwater to tidal loading has a certain spatial range. The horizontal influence of ocean tide on the groundwater level in Naozhou Island is about 400-500 m. (2) The distance from the sea and the aquifer properties are the main factors affecting the hydrodynamic response to the tide. (3) The channel connecting groundwater and seawater in Naozhou Island is distributed in the Quaternary medium sand layer. When the aquifer has a good hydrodynamic response to the tide and good connectivity with seawater, the seawater salt is more easily transmitted to the groundwater. The response analysis of groundwater dynamics to ocean tides can identify the influence range of ocean tides effectively, providing an important basis for the salinity phenomenon of groundwater in the island or nearshore areas.

       

    • loading
    • Abarca, E., Karam, H., Hemond, H. F., et al., 2013. Transient Groundwater Dynamics in a Coastal Aquifer: The Effects of Tides, the Lunar Cycle, and the Beach Profile. Water Resources Research, 49(5): 2473-2488. https://doi.org/10.1002/wrcr.20075
      Alcaraz, M., Carrera, J., Cuello, J., et al., 2021. Determining Hydraulic Connectivity of the Coastal Aquifer System of La Plata River Estuary (Argentina) to the Ocean by Analysis of Aquifer Response to Low-Frequency Tidal Components. Hydrogeology Journal, 29(4): 1587-1599. doi: 10.1007/s10040-021-02332-0
      Bakker, M., 2019. Analytic Solutions for Tidal Propagation in Multilayer Coastal Aquifers. Water Resources Research, 55(4): 3452-3464. https://doi.org/10.1029/2019wr024757
      Cao, J. F., Wu, R. Q., Xiao, Z. P., et al., 2014. Analysis of Hydrogen and Oxygen Isotope Characteristics of Groundwater in Naozhou Island. Pearl River, 35(5): 46-49 (in Chinese).
      Carr, P. A., van Der Kamp, G. S., 1969. Determining Aquifer Characteristics by the Tidal Method. Water Resources Research, 5(5): 1023-1031. https://doi.org/10.1029/wr005i005p01023
      Chang, M. X., Shi, J. H., Ye, S. Y., et al., 2021. Dynamic Characteristics and Causes of Shallow Groundwater Level Intra-Annual Changes in the Yellow River Delta. Marine Sciences, 45(10): 20-31 (in Chinese with English abstract).
      Cuello, J. E., Guarracino, L., 2020. Tide-Induced Head Fluctuations in Coastal Aquifers of Variable Thickness. Hydrological Processes, 34(21): 4139-4146. https://doi.org/10.1002/hyp.13873
      Doan, M. L., Brodsky, E. E., Prioul, R., et al., 2006. Tidal Analysis of Borehole Pressure: A Tutorial. University of California, Santa Cruz, 28-38.
      Dong, C. H., Gao, Z., Yu, X. H., 2004. The Principle and Application of Matlab Wavelet Analysis Toolbox. National Defense Industry Press, Beijing, 1-8 (in Chinese).
      Fadili, A., Malaurent, P., Najib, S., et al., 2016. Investigation of Groundwater Behavior in Response to Oceanic Tide and Hydrodynamic Assessment of Coastal Aquifers. Environmental Monitoring and Assessment, 188(5): 290. https://doi.org/10.1007/s10661-016-5287-2
      Fang, Y. H., Zheng, T. Y., Zheng, X. L., et al., 2021. Influence of Tide-Induced Unstable Flow on Seawater Intrusion and Submarine Groundwater Discharge. Water Resources Research, 57(4): e2020WR029038. https://doi.org/10.1029/2020wr029038
      Fu, C. S., Chen, J. Y., Zeng, S. Q., et al., 2008. Statistical Analysis on Impact of Tide on Water Table Fluctuation in Coastal Aquifer. Journal of Hydraulic Engineering, 39(12): 1365-1376 (in Chinese with English abstract).
      Guarracino, L., Carrera, J., Vázquez-Suñé, E., 2012. Analytical Study of Hydraulic and Mechanical Effects on Tide-Induced Head Fluctuation in a Coastal Aquifer System That Extends under the Sea. Journal of Hydrology, 450: 150-158. https://doi.org/10.1016/j.jhydrol.2012.05.015
      Guo, Z. R., Huang, Y. P., 2003. Comprehensive Study on Seawater Intrusion. Hydrology, 23(3): 10-15 (in Chinese with English abstract).
      He, P., 2016. Power Spectrum Estimation Basics. China Meteorological Press, Beijing, 96-97 (in Chinese).
      Huang, J. O., Xian, Y., Li, W., et al., 2021. Hydrogeochemical Evolution of Groundwater Flow System in the Typical Coastal Plain: A Case Study of Hangjiahu Plain. Earth Science, 46(7): 2565-2582 (in Chinese with English abstract).
      Kim, J. H., Lee, J., Cheong, T. J., et al., 2005. Use of Time Series Analysis for the Identification of Tidal Effect on Groundwater in the Coastal Area of Kimje, Korea. Journal of Hydrology, 300(1/2/3/4): 188-198. https://doi.org/10.1016/j.jhydrol.2004.06.004
      Li, Y., Wang, J. L., Jin, M. G., et al., 2021. Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data. Earth Science, 46(7): 2583-2593 (in Chinese with English abstract).
      Lovrinović, I., Srzić, V., Matić, I., et al., 2022. Combined Multilevel Monitoring and Wavelet Transform Analysis Approach for the Inspection of Ground and Surface Water Dynamics in Shallow Coastal Aquifer. Water, 14(4): 656. https://doi.org/10.3390/w14040656
      Luo, W. Y., 2020. Evaluation and Strategies of Development and Utilization of Groundwater Resources in Naozhou Island, Zhanjiang City. Ground Water, 42(5): 95-98 (in Chinese).
      Luo, Z. J., Wang, X., Dai, J., et al., 2024. Research on the Influence of Land Subsidence on the Minable Groundwater Resources. Earth Science, 49(1): 238-252 (in Chinese with English abstract).
      Mallat, S. G., 1989. Multiresolution Approximations and Wavelet Orthonormal Bases of L 2 (R). Transactions of the American Mathematical Society, 315(1): 69-87. https://doi.org/10.2307/2001373
      McMillan, T. C., Rau, G. C., Timms, W. A., et al., 2019. Utilizing the Impact of Earth and Atmospheric Tides on Groundwater Systems: A Review Reveals the Future Potential. Reviews of Geophysics, 57(2): 281-315. https://doi.org/10.1029/2018rg000630
      Poncela, R., Santamarta, J. C., García-Gil, A., et al., 2022. Hydrogeological Characterization of Heterogeneous Volcanic Aquifers in the Canary Islands Using Recession Analysis of Deep Water Gallery Discharge. Journal of Hydrology, 610: 127975. https://doi.org/10.1016/j.jhydrol.2022.127975
      Purnomo, A. D., Marfai, M. A., Husrin, S., 2021. Identifying the Effect of Tides on Groundwater Level Fluctuations on Gili Ketapang Island, Indonesia. Journal of Environmental Engineering and Landscape Management, 29(3): 215-228. https://doi.org/10.3846/jeelm.2021.14618
      Rizzo, C. B., Song, X. H., de Barros, F. P. J., et al., 2020. Temporal Flow Variations Interact with Spatial Physical Heterogeneity to Impact Solute Transport in Managed River Corridors. Journal of Contaminant Hydrology, 235: 103713. https://doi.org/10.1016/j.jconhyd.2020.103713
      Robinson, C., Gibbes, B., Carey, H., et al., 2007. Salt-Freshwater Dynamics in a Subterranean Estuary over a Spring-Neap Tidal Cycle. Journal of Geophysical Research: Oceans, 112(C9): 2006JC003888. https://doi.org/10.1029/2006jc003888
      Rotzoll, K., El-Kadi, A. I., Gingerich, S. B., 2008. Analysis of an Unconfined Aquifer Subject to Asynchronous Dual-Tide Propagation. Groundwater, 46(2): 239-250. https://doi.org/10.1111/j.1745-6584.2007.00412.x
      Sheng, C., Han, D. M., Xu, H. H., et al., 2020. Evaluating Dynamic Mechanisms and Formation Process of Freshwater Lenses on Reclaimed Atoll Islands in the South China Sea. Journal of Hydrology, 584: 124641. https://doi.org/10.1016/j.jhydrol.2020.124641
      Su, Z. H., 1997. Development and Utilization Protection Strategies of Groundwater against Seawater Intrusion in Zhanjiang City. Geotechnical Investigation & Surveying, 2: 29-33 (in Chinese).
      Trefry, M. G., Bekele, E., 2004. Structural Characterization of an Island Aquifer via Tidal Methods. Water Resources Research, 40(1): 2003WR002003. https://doi.org/10.1029/2003wr002003
      Trglavcnik, V., Morrow, D., Weber, K. P., et al., 2018. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer. Water Resources Research, 54(4): 2749-2767. https://doi.org/10.1002/2017wr020975
      Wheatcraft, S. W., Buddemeier, R. W., 1981. Atoll Island Hydrology. Groundwater, 19(3): 311-320. https://doi.org/10.1111/j.1745-6584.1981.tb03476.x
      Zhang, H., 2021. Characterization of a Multi-Layer Karst Aquifer through Analysis of Tidal Fluctuation. Journal of Hydrology, 601: 126677. https://doi.org/10.1016/j.jhydrol.2021.126677
      Zhao, H. T., 1988. Natural Environmental Analyses of the South China Coastal Zone. Tropic Oceanology, 7(4): 36-45 (in Chinese with English abstract).
      Zhao, H. T., Wang, L. R., Song, Z. J., 2014. Review on Freshwater Lens of Lime-Sand Island in Nanhai Zhudao. Marine Science Bulletin, 33(6): 601-610 (in Chinese with English abstract).
      Zheng, W. Q., 2017. Research on Numerical Modeling and Prediction of Seawater Intrusion in Naozhou Island. Chinese Journal of Engineering Geophysics, 14(3): 371-378 (in Chinese with English abstract).
      Zheng, Y. R., Zhang, J., Wu, R. S., 2012. Tidal Analysis along the Coast of the Northern South China Sea. Journal of Oceanography in Taiwan Strait, 31(4): 549-556 (in Chinese with English abstract).
      曹基富, 吴瑞钦, 肖子平, 等, 2014. 硇洲岛地下水氢氧同位素特征分析. 人民珠江, 35(5): 46-49.
      常茂祥, 史经昊, 叶思源, 等, 2021. 黄河三角洲浅层地下水位年内变化特征及影响因素. 海洋科学, 45(10): 20-31.
      董长虹, 高志, 余啸海, 2004. Matlab小波分析工具箱原理与应用. 北京: 国防工业出版社, 1-8.
      付丛生, 陈建耀, 曾松青, 等, 2008. 滨海地区潮汐对地下水位变化影响的统计学分析. 水利学报, 39(12): 1365-1376.
      郭占荣, 黄奕普, 2003. 海水入侵问题研究综述. 水文, 23(3): 10-15.
      何平, 2016. 功率谱估计基础. 北京: 气象出版社, 96-97.
      黄金瓯, 鲜阳, 黎伟, 等, 2021. 典型滨海平原区地下水流系统水化学场演化及成因: 以杭嘉湖平原为例. 地球科学, 46(7): 2565-2582. doi: 10.3799/dqkx.2020.230
      李严, 王家乐, 靳孟贵, 等, 2021. 运用水文时间序列分析识别济南泉域岩溶发育特征. 地球科学, 46(7): 2583-2593. doi: 10.3799/dqkx.2020.236
      罗炜宇, 2020. 湛江市硇洲岛地下水资源评价及开发利用对策研究. 地下水, 42(5): 95-98.
      骆祖江, 王鑫, 代敬, 等, 2024. 地面沉降对地下水可采资源的影响. 地球科学, 49(1): 238-252. doi: 10.3799/dqkx.2022.143
      苏肇汉, 1997. 湛江市地下水防海水入侵的开发利用保护对策. 工程勘察, 2: 29-33.
      赵焕庭, 1988. 华南海岸带自然环境分析. 热带海洋, 7(4): 36-45.
      赵焕庭, 王丽荣, 宋朝景, 2014. 南海诸岛灰沙岛淡水透镜体研究述评. 海洋通报, 33(6): 601-610.
      郑王琼, 2017. 硇洲岛三维海水入侵数值模拟及预测研究. 工程地球物理学报, 14(3): 371-378.
      郑有任, 张娟, 吴日升, 2012. 南海北部沿岸海域潮汐的调和分析. 台湾海峡, 31(4): 549-556.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)  / Tables(2)

      Article views (38) PDF downloads(8) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return