Citation: | Chen Wenhong, Yu Bin, Ye Peng, Liu Kan, Ye Longzhen, Yang Zhiyi, 2025. Research on Material Source Factors of Gully-Type Debris Flow Caused by Shallow Landslides. Earth Science, 50(6): 2356-2371. doi: 10.3799/dqkx.2022.469 |
Adeline, K. R. M., Chen, M., Briottet, X., et al., 2013. Shadow Detection in Very High Spatial Resolution Aerial Images: A Comparative Study. ISPRS Journal of Photogrammetry and Remote Sensing, 80: 21-38. https://doi.org/10.1016/j.isprsjprs.2013.02.003
|
Bordoni, M., Galanti, Y., Bartelletti, C., et al., 2020. The Influence of the Inventory on the Determination of the Rainfall-Induced Shallow Landslides Susceptibility Using Generalized Additive Models. Catena, 193: 104630. https://doi.org/10.1016/j.catena.2020.104630.
|
Bai, H. L., Feng, W. K., Yi, X. Y., et al., 2021. Group-Occurring Landslides and Debris Flows Caused by the Continuous Heavy Rainfall in June 2019 in Mibei Village, Longchuan County, Guangdong Province, China. Natural Hazards, 108(3): 3181-3201. https://doi.org/10.1007/s11069-021-04819-1
|
Chiang, S. H., Chang, K. T., Mondini, A. C., et al., 2012. Simulation of Event-Based Landslides and Debris Flows at Watershed Level. Geomorphology, 138(1): 306-318. https://doi.org/10.1016/j.geomorph.2011.09.016
|
Chen, X. L., Jiang, K., 2021. Modeling Method of Concurrent Emergency Chain Based on Bayesian Network. Chinese Journal of Management Science, 29(10): 165-177(in Chinese with English abstract).
|
Cui, P., Guo, J., 2021. Evolution Models, Risk Prevention and Control Countermeasures of the Valley Disaster Chain. Advanced Engineering Sciences, 53(3): 5-18(in Chinese with English abstract).
|
Cannon, S. H., Gartner, J. E., Rupert, M. G., et al., 2010. Predicting the Probability and Volume of Postwildfire Debris Flows in the Intermountain Western United States. GSA Bulletin, 122(1-2): 127-144. https://doi.org/10.1130/b26459.1
|
Dahlquist, M. P., West, A. J., 2019. Initiation and Runout of Post-Seismic Debris Flows: Insights from the 2015 Gorkha Earthquake. Geophysical Research Letters, 46(16): 9658-9668. https://doi.org/10.1029/2019GL083548
|
Dou, J., Paudel, U., Oguchi, T., et al., 2015. Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan. Terrestrial, Atmospheric and Oceanic Sciences, 26: 227.
|
Fan, L. F., Lehmann, P., McArdell, B., et al., 2017. Linking Rainfall-Induced Landslides with Debris Flows Runout Patterns towards Catchment Scale Hazard Assessment. Geomorphology, 280: 1-15. https://doi.org/10.1016/j.geomorph.2016.10.007
|
Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658. (in Chinese with English abstract).
|
Huang, X. H., Guo, F., Deng, M. L., et al., 2020. Understanding the Deformation Mechanism and Threshold Reservoir Level of the Floating Weight-Reducing Landslide in the Three Gorges Reservoir Area, China. Landslides, 17(12): 2879-2894. https://doi.org/10.1007/s10346-020-01435-1
|
Hürlimann, M., Abancó, C., Moya, J., et al., 2014. Results and Experiences Gathered at the Rebaixader Debris-Flow Monitoring Site, Central Pyrenees, Spain. Landslides, 11(6): 939-953. https://doi.org/10.1007/s10346-013-0452-y
|
Iverson, R. M., Reid, M. E., Lahusen, R. G., 1997. Debris-Flow Mobilization from Landslides. Annual Review of Earth and Planetary Sciences, 25: 85. https://doi.org/10.1146/annurev.earth.25.1.85
|
Jakob, M., 2000. The Impacts of Logging on Landslide Activity at Clayoquot Sound, British Columbia. Catena, 38(4): 279-300. https://doi.org/10.1016/s0341-8162(99)00078-8
|
Lan, H. X., Zhou, C. H., Wang, L. J., et al., 2004. Landslide Hazard Spatial Analysis and Prediction Using GIS in the Xiaojiang Watershed, Yunnan, China. Engineering Geology, 76(1-2): 109-128. https://doi.org/10.1016/j.enggeo.2004.06.009
|
Li, Y. W., Xu, L. R., Zhang, L. L., et al., 2023. Study on Development Patterns and Susceptibility Evaluation of Coseismic Landslides within Mountainous Regions Influenced by Strong Earthquakes. Earth Science, 48(5): 1960-1976(in Chinese with English abstract).
|
Li, Z. H., Zhang, C. L., Chen, B., et al., 2022. A Technical Framework of Landslide Prevention Based on Multi-Source Remote Sensing and Its Engineering Application. Earth Science, 47(6): 1901-1916(in Chinese with English abstract).
|
Liu, C. N., Dong, J. J., Peng, Y. F., et al., 2009. Effects of Strong Ground Motion on the Susceptibility of Gully Type Debris Flows. Engineering Geology, 104(3-4): 241-253. https://doi.org/10.1016/j.enggeo.2008.10.012
|
Liang, Z., Wang, C. M., Ma, D. H., et al., 2021. Exploring the Potential Relationship between the Occurrence of Debris Flow and Landslides. Natural Hazards and Earth System Sciences, 21(4): 1247-1262. https://doi.org/10.5194/nhess-21-1247-2021
|
Pradhan, A. M. S., Lee, S. R., Kim, Y. T., 2019. A Shallow Slide Prediction Model Combining Rainfall Threshold Warnings and Shallow Slide Susceptibility in Busan, Korea. Landslides, 16(3): 647-659. https://doi.org/10.1007/s10346-018-1112-z
|
Pu, L. M., Zhang, S. W., Wang, R. H. et al., 2016. Analysis of Erosion Gully Information Extraction Based on Multi-Resource Remote Sensing Images. Geography and Geo-Information Science, 32(1): 90-94(in Chinese with English abstract).
|
Qi, S., Zhang, Y. L., Zhang, P., et al., 2014. An Assessment Index System for Landslide Risk in Bailong River Basin. Journal of Yangtze River Scientific Research Institute, 31(1): 23-28 (in Chinese with English abstract).
|
Qiu, Q. C., Zheng, Q. M., Zhang, N. S., 2010. Meteorological Condition Analysis for the Extraordinarily Geological Hazard in Shunchang, Fujian Province. Geology of Fujian, 29(Suppl. 1): 92-97(in Chinese with English abstract).
|
Roering, J. J., Schmidt, K. M., Stock, J. D., et al., 2003. Shallow Landsliding, Root Reinforcement, and the Spatial Distribution of Trees in the Oregon Coast Range. Canadian Geotechnical Journal, 40(2): 237-253. https://doi.org/10.1139/t02-113
|
Tang, C., Zhu, J., Chang, M., et al., 2012. An Empirical-Statistical Model for Predicting Debris-Flow Runout Zones in the Wenchuan Earthquake Area. Quaternary International, 250: 63-73. https://doi.org/10.1016/j.quaint.2010.11.020
|
van Den Eeckhaut, M., Moeyersons, J., Nyssen, J., et al., 2009. Spatial Patterns of Old, Deep-Seated Landslides: A Case-Study in the Northern Ethiopian Highlands. Geomorphology, 105(3-4): 239-252. https://doi.org/10.1016/j.geomorph.2008.09.027
|
Vandromme, R., Thiery, Y., Bernardie, S., et al., 2020. ALICE (Assessment of Landslides Induced by Climatic Events): A Single Tool to Integrate Shallow and Deep Landslides for Susceptibility and Hazard Assessment. Geomorphology, 367: 107307. https://doi.org/10.1016/j.geomorph.2020.107307
|
Wang, Y. M., Yin, K. L., 2018. Initiating Mechanism of Typhoon-Triggered Debris Flow. Earth Science, 43(Suppl. 2): 263-270(in Chinese with English abstract).
|
Wei, D. G., Jie, Y. J., Huang, T. G., 1997. Regional Geological Structure of Fujian. Regional Geology of China, 16(2): 162-170(in Chinese with English abstract).
|
Xia, M. X., Li, Y. Y., Wu, J. M., et al., 2021. Research on Rainfall Early Warning Threshold of Landslide Disaster in Zhangjiajie City Based on 1-D Statistical Model. Journal of Natural Disasters, 30(4): 203-212. https://doi.org/10.13577/j.jnd.2021.0422
|
Yang, H. J., Yang, T. Q., Zhang, S. J., et al., 2020. Rainfall-Induced Landslides and Debris Flows in Mengdong Town, Yunnan Province, China. Landslides, 17(4): 931-941. https://doi.org/10.1007/s10346-019-01336-y
|
Ye, X. Q., 2018. Planting Performance and High-Yielding Cultivation Techniques of Y Liangyou 8199 in Shunchang County. Fujian Science and Technology of Rice and Wheat, 36(1): 37-39 in Chinese with English abstract.
|
Yu, B., Wang, T., Zhu, Y., et al., 2016. Topographical and Rainfall Factors Determining the Formation of Gully-Type Debris Flows Caused by Shallow Landslides in the Dayi Area, Guizhou Province, China. Environmental Earth Sciences, 75(7): 551. https://doi.org/10.1007/s12665-016-5243-z
|
Zhang, Q. K., Ling, S. X., Li, X. N., et al., 2020. Comparison of Landslide Susceptibility Mapping Rapid Assessment Models in Jiuzhaigou County, Sichuan Province, China. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1595-1610 (in Chinese with English abstract).
|
Zhou, B. F., Lee, D. J., Luo, D. F., et al., 1991. A Guide for Debris-Flows Hazard Mitigation. Science Press, Beijing (in Chinese).
|
Zhou, W., Tang, C., Van Asch, T. W. J., et al., 2016. A Rapid Method to Identify the Potential of Debris Flow Development Induced by Rainfall in the Catchments of the Wenchuan Earthquake Area. Landslides, 13(5): 1243-1259. https://doi.org/10.1007/s10346-015-0631-0
|
陈雪龙, 姜坤, 2021. 基于贝叶斯网络的并发型突发事件链建模方法. 中国管理科学, 29(10): 165-177.
|
崔鹏, 郭剑, 2021. 沟谷灾害链演化模式与风险防控对策. 工程科学与技术, 53(3): 5-18.
|
郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658.
|
李永威, 徐林荣, 张亮亮, 等, 2023. 强震山区地震诱发滑坡发育规律与易发性评估. 地球科学, 48(5): 1960-1976.
|
李振洪, 张成龙, 陈博, 等, 2022. 一种基于多源遥感的滑坡防灾技术框架及其工程应用. 地球科学, 47(6): 1901-1916.
|
蒲罗曼, 张树文, 王让虎, 等, 2016. 多源遥感影像的侵蚀沟信息提取分析. 地理与地理信息科学, 32(1): 90-94.
|
齐识, 张雅莉, 张鹏, 等, 2014. 白龙江流域滑坡危险性评价指标体系的构建. 长江科学院院报, 31(1): 23-28.
|
邱泉成, 郑清明, 张能胜, 2010. 福建顺昌特大地质灾害气象条件分析. 福建地质, 29(增刊1): 92-97.
|
王一鸣, 殷坤龙, 2018. 台风暴雨型泥石流启动机制. 地球科学, 43(增刊2): 263-270.
|
韦德光, 揭育金, 黄廷淦, 1997. 福建省区域地质构造特征. 中国区域地质, 16(2): 162-170.
|
叶喜琴, 2018. Y两优8199在顺昌县种植表现与高产栽培技术. 福建稻麦科技, 36(1): 37-39.
|
张玘恺, 凌斯祥, 李晓宁, 等, 2020. 九寨沟县滑坡灾害易发性快速评估模型对比研究. 岩石力学与工程学报, 39(8): 1595-1610.
|
周必凡, 李德基, 罗德富, 等, 1991. 泥石流防治指南. 北京: 科学出版社.
|