• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Liu Li, Shen Junkai, Zhang Lingxin, 2023. A Machine Learning-Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses. Earth Science, 48(5): 1769-1779. doi: 10.3799/dqkx.2022.481
    Citation: Liu Li, Shen Junkai, Zhang Lingxin, 2023. A Machine Learning-Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses. Earth Science, 48(5): 1769-1779. doi: 10.3799/dqkx.2022.481

    A Machine Learning-Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses

    doi: 10.3799/dqkx.2022.481
    • Received Date: 2022-09-23
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • Since the existing earthquake damage prediction methods cannot make rapid predictions for brick masonry structures. A rapid prediction method for earthquake damage of brick masonry structures is proposed. The method uses a machine learning model, considering the ground motion characteristics and structural characteristics. 12 ground motion parameters that represent the ground motion characteristics and 7 structural parameters that have a strong correlation with the damage of brick masonry structures are selected. The ground motion parameters are considered in four aspects: time domain, frequency domain, response spectrum and holding time, and the structural parameters are considered in terms of bearing capacity and stiffness. Three machine learning models based on support vector machine, random forest and artificial neural network are given for fast prediction of seismic damage of brick masonry structures. The input parameters were further optimized using correlation analysis, and the optimal model after optimizing the input parameters was given. The results show that the ANN model has the highest prediction accuracy of 91.56% when 19 input parameters were used. The prediction accuracy of the RF model-based earthquake damage prediction method was higher when 12 optimized parameters were used as inputs, reaching 90.01%. The prediction performance of the RF-based model was more stable when the input parameters were gradually reduced. The optimized input parameters of the RF model-based prediction method can achieve rapid prediction of seismic damage to brick masonry structures. The method that considers both structural and ground vibration parameters as input greatly improves the accuracy of prediction compared to the method that considers only structural parameters or only ground vibration parameters as input.

       

    • loading
    • Breiman, L., 1996. Bagging Predictors. Mach Learn, 24(2): 123-140.
      Chen, J. Y., Li, J., Han, J. C., et al., 2017. Correlation between Ground Motion Intensity Indexes and Seismic Responses of Frame Structures. Journal of Vibration and Shock, 36(3): 105-112, 144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZDCJ201703017.htm
      Gunn, S. R., 1998. Support Vector Machines for Classification and Regression. ISIS Technical Report, 14(1): 5-16. http://pubs.rsc.org/en/content/articlelanding/2010/jm/b918972f
      Harirchian, E., Kumari, V., Jadhav, K., et al., 2020. A Machine Learning Framework for Assessing Seismic Hazard Safety of Reinforced Concrete Buildings. Applied Sciences, 10(20): 7153. https://doi.org/10.3390/app10207153
      Ho, T. K., 1998. The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8): 832-844. https://doi.org/10.1109/340709601
      Lautour, O. R., Omenzetter, P., 2009. Prediction of Seismic-Induced Structural Damage Using Artificial Neural Networks. Engineering Structures, 31(2): 600-606. https://doi.org/10.1016/j.engstruct.2008.11.010
      Liu, B. Y., Ye, L. Y., Jiang, J. J., 2002. Forecasting Seismic Damage in Multistory Masonry Buildings with a Neuro-Fuzzy Approach. Journal of Tsinghua University (Science and Technology), 42(6): 843-846 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-qhxb200206035.htm
      Luo, Z. T., 2018. Study on Seismic Performance of Masonry Structure with Falling Floors Based on Dynamic Elastic-Plastic Analysis (Dissertation). Southwest Jiaotong University, Chengdu (in Chinese with English abstract).
      Mangalathu, S., Sun, H., Nweke, C. C., et al., 2020. Classifying Earthquake Damage to Buildings Using Machine Learning. Earthquake Spectra, 36(1): 183-208. https://doi.org/10.1177/8755293019878137
      Morfidis, K., Kostinakis, K., 2017. Seismic Parameters' Combinations for the Optimum Prediction of the Damage State of R/C Buildings Using Neural Networks. Advances in Engineering Software, 106: 1-16. https://doi.org/10.1016/j.advengsoft.2017.01.001
      Morfidis, K., Kostinakis, K., 2018. Approaches to the Rapid Seismic Damage Prediction of R/C Buildings Using Artificial Neural Networks. Engineering Structures, 165: 120-141. https://doi.org/10.1016/j.engstruct.2018.03.028
      Pan, Z. H., Hong, B., 2014. Influence of Spectral Characteristics and Duration of Ground Motions on Results of IDA. Journal of Vibration and Shock, 33(5): 155-159, 199 (in Chinese with English abstract). http://www.researchgate.net/publication/290098885_Influence_of_spectral_characteristics_and_duration_of_ground_motions_on_results_of_IDA
      Shaheen, M. S. A., Hakan, G., 2022. Robust Multi-Output Machine Learning Regression for Seismic Hazard Model Using Peak Crust Acceleration Case Study, Turkey, Iraq and Iran. Journal of Earth Science, 1-54. https://doi.org/10.1007/s12583-022-1616-2
      Tang, H., Chen, G. X., Li, F. M., 2006. Seismic Damage Prediction of Multistory Masonry Buildings Based on BP Neural Network Model. Earthquake Engineering and Engineering Vibration, 26(4): 141-146 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGGC200604023&dbcode=CJFD&year=2006&dflag=pdfdown
      Wang, X., Sun, B. T., Yan, P. L., et al., 2019. Influence Analysis of Constructional Column and Masonry Mortar on Seismic Resistance of Masonry Structure. Earthquake Prevention Technology, 14(3) : 501-512 (in Chinese with English abstract).
      Wu, B., Qiu, W. X., Xu, S. X., et al., 2022. A Method for Assessing the Probability of Tunnel Collapse Based on Artificial Intelligence Deformation Prediction. Earth Science, 1-16 (in Chinese with English abstract). doi: 10.1007/s13369-021-06359-z?utm_content=meta
      Xu, Y. J., Lu, X. Z., Tian, Y., et al., 2020. Real-Time Seismic Damage Prediction and Comparison of Various Ground Motion Intensity Measures Based on Machine Learning. Journal of Earthquake Engineering, 1-21. https://doi.org/10.1080/13632469.2020.1826371
      Yang, T. F., 2018. Research on the Influence Factors of Seismic Performance of Masonry Structures Based on Numerical Simulation (Dissertation). Xi'an University of Architecture and Technology, Xi'an (in Chinese with English abstract).
      Zhang, G. X., Sun, B. T., 2010. A Method for Earthquake Damage Prediction of Building Groups Based on Multiple Factors. World Earthquake Engineering, 26(1): 26-30 (in Chinese with English abstract). http://www.researchgate.net/publication/294627853_A_method_for_earthquake_damage_prediction_of_building_groups_based_on_multiple_factors
      Zhang, L. X., Dai, J. H., Shen, J. K., et al., 2019. Rapid Prediction Model of Earthquake Damage to Frame Structure Based on LM-BP Neural Network. Journal of Natural Disasters, 28(2): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZRZH201902001.htm
      Zhang, L. X., Jiang, J. R., Liu, J. P., 2002. Seismic Vulnerability Analysis of Multistory Dwelling Brick Buildings. Earthquake Engineering and Engineering Vibration, 22(1): 49-55 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGGC200201009&dbcode=CJFD&year=2002&dflag=pdfdown
      Zhang, L. X., Kong, J. H., 2021. Comparative Analysis for Seismic Performance of Masonry Structure with Bottom Frame Designed with New and Old Codes. Journal of Shenyang University of Technology, 43(2): 220-227 (in Chinese with English abstract).
      Zhang, L. X., Lu, R. F., Zhu, B. J., 2021. Determination and Verification for the Nonlinear Seismic Response Analysis Method and the Damage State Index of Brick Masonry Buildings. Earthquake Engineering and Engineering Vibration, 41(3): 1-10 (in Chinese with English abstract).
      Zhang, Z. Q., Fan, J. Q., Zeng, P., et al., 2023. Probabilistic Classification Prediction of Tunnel Squeezing Based on Bayesian Network and Its Application during the Investigation and Design Stage. Earth Science, 48(5): 1923-1934 (in Chinese with English abstract).
      陈健云, 李静, 韩进财, 等, 2017. 地震动强度指标与框架结构响应的相关性研究. 振动与冲击, 36(3): 105-112, 144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201703017.htm
      刘本玉, 叶燎原, 江见鲸, 2002. 用模糊人工神经网络方法预测多层砖房震害. 清华大学学报(自然科学版), 42(6): 843-846. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200206035.htm
      罗梓桐, 2018. 基于动力弹塑性分析的掉层砌体结构抗震性能研究(硕士学位论文). 成都: 西南交通大学.
      潘志宏, 洪博, 2014. 地震动频谱特性和持时对IDA结果影响的研究. 振动与冲击, 33(5): 155-159, 199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201405029.htm
      汤皓, 陈国兴, 李方明, 2006. 基于BP神经网络模型的多层砖房震害预测方法. 地震工程与工程振动, 26(4): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200604023.htm
      王晓, 孙柏涛, 闫培雷, 等, 2019. 构造柱和砌筑砂浆对砌体结构抗震能力影响分析. 震灾防御技术, 14(3): 501-512. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201903004.htm
      吴波, 邱伟兴, 徐世祥, 等, 2022. 基于人工智能变形预测隧道坍塌失效概率评估方法. 地球科学, 1-16.
      杨腾飞, 2018. 基于数值模拟的砌体结构抗震性能影响因素研究(硕士学位论文). 西安: 西安建筑科技大学.
      张桂欣, 孙柏涛, 2010. 多因素影响的建筑物群体震害预测方法研究. 世界地震工程, 26(1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201001005.htm
      张令心, 戴静涵, 沈俊凯, 等, 2019. 基于LM-BP神经网络的钢筋混凝土框架结构震害快速预测模型. 自然灾害学报, 28(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201902001.htm
      张令心, 江近仁, 刘洁平, 2002. 多层住宅砖房的地震易损性分析. 地震工程与工程振动, 22(1): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200201009.htm
      张令心, 孔建辉, 2021. 新旧规范设计的底框砌体结构抗震性能对比分析. 沈阳工业大学学报, 43(2): 220-227. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY202102018.htm
      张令心, 鲁若帆, 朱柏洁, 2021. 砖砌体房屋非线性地震反应分析方法和破坏状态指标的确定与验证. 地震工程与工程振动, 41(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202103001.htm
      张志强, 范俊奇, 曾鹏, 等, 2023. 基于贝叶斯网络的隧道勘察设计期大变形灾害概率分级预测与应用研究. 地球科学, 48(5): 1923-1934. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305017.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(11)

      Article views (942) PDF downloads(86) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return