Citation: | Zhang Zhen, Hu Kehong, Lu Yijie, Zhang Shasha, Huang Danni, 2024. Glacier Movement Characteristics and Influencing Factors in High Mountain Asia. Earth Science, 49(8): 3010-3019. doi: 10.3799/dqkx.2022.482 |
Brun, F., Berthier, E., Wagnon, P., et al., 2017. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances from 2000 to 2016. Nature Geoscience, 10(9): 668-673. https://doi.org/10.1038/ngeo2999
|
Dehecq, A., Gourmelen N., Gardner, A. S., et al., 2018. Twenty-First Century Glacier Slowdown Driven by Mass Loss in High Mountain Asia. Nature Geoscience, 12(1): 22-27. https://doi.org/10.1038/s41561-018-0271-9
|
Gardelle, J., Berthier, E., Arnaud, Y., et al., 2013. Region-wide Glacier Mass Balances Over the Pamir-Karakoram-Himalaya During 1999-2011. The Cryosphere, 7(4): 1263-1286. https://doi.org/10.5194/tc-7-1263-2013
|
Guo, W. Q., Zhang, Z., Wu, K. P., et al., 2022. A Review on the Advances in Surge-Type Glacier Study. Journal of Glaciology and Geocryology, 44(3): 954-970(in Chinese with English abstract).
|
Hewitt, K., 2005. The Karakoram Anomaly? Glacier Expansion and the 'Elevation Effect, ' Karakoram Himalaya. Mountain Research and Development, 25(4): 332-340. https://doi.org/10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2
|
Horgan, H. J., Anderson, B., Alley, R. B., et al., 2015. Glacier Velocity Variability Due to Rain-induced Sliding and Cavity Formation. Earth and Planetary Science Letters, 432, 273-282. https://doi.org/10.1016/j.epsl. 2015. 10.016 doi: 10.1016/j.epsl.2015.10.016
|
Huang, D. N., Zhang, Z., Zhang, S. S., et al., 2021. Characteristics of Glacier Movement in the Eastern Pamir Plateau. Arid Land Geography, 44(1): 131-140(in Chinese with English abstract).
|
Huang, M. H., Sun, Z. Z., 1982. Some Flow Characteristics of Continental-Type Glaciers in China. Journal of Glaciology and Geocryology, 4(2): 35-45(in Chinese with English abstract).
|
Immerzeel, W. W., van Beek L. P. H., Bierkens M. F. P., 2010. Climate Change Will Affect the Asian Water Towers. Science, 328(5984): 1382-1385. https://doi.org/10.1126/science.1183188
|
Kääb, A., 2005. Combination of SRTM3 and Repeat ASTER Data for Deriving Alpine Glacier Flow Velocities in the Bhutan Himalaya. Remote Sensing of Environment, 94(4): 463-474. https://doi.org/10.1016/j.rse.2004.11.003
|
Li, Y., Cui, Y. F., Li, Z. H., et al., 2022. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984(in Chinese with English abstract).
|
Lv, M. Y., Guo, H. D., Lu, X. C., et al., 2019. Characterizing the Behaviour of Surge- and Non-Surge-Type Glaciers in the Kingata Mountains, Eastern Pamir, from 1999 to 2016. The Cryosphere, 13(1): 219-236. https://doi.org/10.5194/tc-13-219-2019
|
Paul, F., Bolch, T., Kääb, A., et al., 2015. The Glaciers Climate Change Initiative: Methods for Creating Glacier Area, Elevation Change and Velocity Products. Remote Sensing of Environment, 162: 408-426. https://doi.org/10.1016/j.rse.2013.07.043
|
Scherler, D., Bookhagen, B., Strecker, M. R., 2011. Spatially Variable Response of Himalayan Glaciers to Climate Change Affected by Debris Cover. Nature Geoscience, 4(3): 156-159. https://doi.org/10.1038/ngeo1068
|
Usman, M., Furuya, M., 2018. Interannual Modulation of Seasonal Glacial Velocity Variations in the Eastern Karakoram Detected by ALOS-1/2 Data. Journal of Glaciology, 64: 465-476. https://doi.org/10.1017/jog.2018.39
|
Wang, J. F., Xu, C. D., 2017. Geodetector: Principle and Prospective. Acta Geographica Sinica, 72(1): 116-134(in Chinese with English abstract).
|
Wang, X., Liu, Q. H., Jiang, L. H., et al., 2015. Characteristics and Influence Factors of Glacier Surface Flow Velocity in the Everest Region, the Himalayas Derived from ALOS/PALSAR Images. Journal of Glaciology and Geocryology, 37(3): 570-579(in Chinese with English abstract).
|
Xu, J. L., Zhang, S. Q., Han, H. D., et al., 2011. Change of the Surface Velocity of Koxkar Baxi Glacier Interpreted from Remote Sensing Data, Tianshan Mountains. Journal of Glaciology and Geocryology, 33(2): 268-275 (in Chinese with English abstract).
|
Yan, X. G., Ma, J. Z., Ma, X. Y., et al., 2020. Hydrothermal Combination and Geometry Control the Spatial and Temporal Rhythm of Glacier Flow. Science of The Total Environment, 760: 144315-144327. https://doi.org/10.1016/j.scitotenv.2020.144315
|
Yang, Q. Q., Zheng, X. Y., Su, Z. M., et al., 2022. Review on Rock-Ice Avalanches. Earth Science, 47(3): 935-949(in Chinese with English abstract).
|
Yu, B., He, Y. X., Liu, Y., 2022. Quantitative Susceptibility Assessment of Breach of Moraine-Dammed Lakes. Earth Science, 47(6): 1999-2014(in Chinese with English abstract).
|
Yao, T., Thompson, L., Yang, W., et al., 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2(9): 663-667. https://doi.org/10.1038/Nclimate1580
|
Zhang, Q., Zheng, Y. T., Zhang L., et al., 2020. South Inylchek Glacier Surface Motion Extraction and Analysis Based on Time-Series Pixel Tracking Algorithm. Remote Sensing Technology and Application, 35(6): 1273-1282(in Chinese with English abstract).
|
Zhang, Y., Liu, S. Y., 2017. Research Progress on Debris Thickness Estimation and Its Effect on Debris-Covered Glaciers in Western China. Acta Geographica Sinica, 72(9): 1606-1620(in Chinese with English abstract).
|
郭万钦, 张震, 吴坤鹏, 等, 2022. 跃动冰川研究进展. 冰川冻土, 44(3): 954-970. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202203019.htm
|
黄丹妮, 张震, 张莎莎, 等, 2021. 东帕米尔高原冰川运动特征分析. 干旱区地理, 44(1): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202101016.htm
|
黄茂桓, 孙作哲. 1982. 我国大陆型冰川运动的某些特征. 冰川冻土, 4(2): 35-45. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198202005.htm
|
李尧, 崔一飞, 李振洪, 等, 2022. 川藏交通廊道林波段冰川泥石流发育动态演化分析及监测预警方案. 地球科学, 47(6): 1969-1984. doi: 10.3799/dqkx.2021.194
|
王劲峰, 徐成东. 2017. 地理探测器: 原理与展望. 地理学报, 72(1): 116-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201905015.htm
|
王欣, 刘琼欢, 蒋亮虹, 等, 2015. 基于SAR影像的喜马拉雅山珠穆朗玛峰地区冰川运动速度特征及其影响因素分析. 冰川冻土, 37(3): 570-579. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201503002.htm
|
许君利, 张世强, 韩海东, 等, 2011. 天山托木尔峰科其喀尔巴西冰川表面运动速度特征分析. 冰川冻土, 33(2): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201102009.htm
|
杨情情, 郑欣玉, 苏志满, 等, 2022. 高速远程冰-岩碎屑流研究进展. 地球科学, 47(3): 935-949. doi: 10.3799/dqkx.2021.158
|
余斌, 何元勋, 刘秧. 2022. 冰碛湖溃决易发性的定量评价. 地球科学, 47(6): 1999-2014. doi: 10.3799/dqkx.2021.161
|
张齐民, 郑一桐, 张露, 等, 2020. 基于时序像素跟踪算法的南伊内里切克冰川运动提取与特征分析. 遥感技术与应用, 35(6): 1273-1282. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS202006003.htm
|
张勇, 刘时银, 2017. 中国冰川区表碛厚度估算及其影响研究进展. 地理学报, 72(9): 1606-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201709007.htm
|