• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 12
    Dec.  2023
    Turn off MathJax
    Article Contents
    Guo Ying, Du Xiaofeng, Yang Bo, Huang Zhen, Wang Jun, Li Zhiqiang, 2023. Geochemical Characteristics and Genesis of Upper Sinian-Lower Paleozoic Dolomite in Lower Yangtze Region: A Case Study from Nanjing Area. Earth Science, 48(12): 4558-4574. doi: 10.3799/dqkx.2022.492
    Citation: Guo Ying, Du Xiaofeng, Yang Bo, Huang Zhen, Wang Jun, Li Zhiqiang, 2023. Geochemical Characteristics and Genesis of Upper Sinian-Lower Paleozoic Dolomite in Lower Yangtze Region: A Case Study from Nanjing Area. Earth Science, 48(12): 4558-4574. doi: 10.3799/dqkx.2022.492

    Geochemical Characteristics and Genesis of Upper Sinian-Lower Paleozoic Dolomite in Lower Yangtze Region: A Case Study from Nanjing Area

    doi: 10.3799/dqkx.2022.492
    • Received Date: 2022-03-01
      Available Online: 2024-01-03
    • Publish Date: 2023-12-25
    • The Upper Sinian-Lower Paleozoic dolostones is widely developed in the Yangtze platform, which is one of the most important carbonate reservoirs. There has been few studies on the dolostone in the Lower Yangtze region, restraining our recognition to the properties of dolostone reservoir. In this paper it systematically investigates the geochemical characteristics and formation mechanisms of dolostone in the Lower Yangtze area based on an integrated petrological, major and trace element, rare earth element, and carbon oxygen isotope analyses. The results show that the studied dolostone can be divided into four types, namely, micrite dolostone, powder-fine dolostone, fine crystal dolostone, and medium crystal dolostone. The Upper Sinian micritic dolostone has high Mg content and low Fe, Mn, Sr contents, high δ18O value, forming temperature close to surface temperature, higher salinity index compared with sea water, low ΣREE value, negative Ce and Eu anomalies, and REE distribution pattern which are similar to marine limestone, indicating the dolostone belongs to penecontemporaneous dolomitization in an environment of concentrated seawater fluid with strong evaporation near the surface. The Middle Cambrian powder-fine dolostone is characterized by fog-core bright edge structure, similar contents of Mg, Fe, Mn and REE characteristics compared with micritic dolomite, high salinity index, and relatively medium δ18O value ranging from -2.5‰ to -6.5‰. The genesis of this dolomite is percolation reflux dolomitization in shallow burial environment. Marked by higher Fe content and ∑REE values, low δ18O value (-6.5‰ to -10‰), higher formation temperature, the Upper Cambrian fine-grained dolostone is attributed to buried dolomitization genetic. The Lower Ordovician medium crystal dolomite is characterized by high contents of Fe, Mn, Al, Si, Sr and ∑REE value, low δ18O value less than -10‰, lower salinity index compared with sea water, positive Eu anomaly, and high diagenetic temperature with thermal alteration characteristics, suggesting the dolomite is of hydrothermal dolomitization origin.

       

    • loading
    • Allan, J. R., Wiggins, W. D., 1993. Dolomite Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. American Association of Petroleum Geologists, Tulsa. https://doi.org/10.1306/ce36576
      Bai, L. H., Shi, W. Z., Zhang, X. M., et al., 2021. Characteristics of Permian Marine Shale and Its Sedimentary Environment in Xuanjing Area, South Anhui Province, Lower Yangtze Area. Earth Science, 46(6): 2204-2217(in Chinese with English abstract).
      Brand, U., Veizer, J., 1980. Chemical Diagenesis of a Multicomponent Carbonate System-1: Trace Elements. SEPM Journal of Sedimentary Research, 50: 1219-1236. https://doi.org/10.1306/212f7bb7-2b24-11d7-8648000102c1865d
      Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008⁃3
      Budd, D. A., 1997. Cenozoic Dolomites of Carbonate Islands: Their Attributes and Origin. Earth⁃Science Reviews, 42(1-2): 1-47. https://doi.org/10.1016/s0012⁃8252(96)00051⁃7
      Derry, L. A., Keto, L. S., Jacobsen, S. B., et al., 1989. Sr Isotopic Variations in Upper Proterozoic Carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta, 53(9): 2331-2339. https://doi.org/10.1016/0016⁃7037(89)90355⁃4
      Fan, D. J., Luan, G. Z., Li, S. T., et al., 1996. The Origin of Dolostones Appear in Upper⁃Sinian and Paleozoic, Tangshan, Nanjing. Transaction of Oceanology and Limnology, (3): 26-32(in Chinese with English abstract).
      Feng, M. Y., Qiang, Z. T., Shen, P., et al., 2016. Evidences for Hydrothermal Dolomite of Sinian Dengying Formation in Gaoshiti⁃Moxi Area, Sichuan Basin. Acta Petrolei Sinica, 37(5): 587-598(in Chinese with English abstract).
      Folk, R. L., 1974. The Natural History of Crystalline Carbonate: Effect of Magnesium Content and Salinity. SEPM Journal of Sedimentary Research, 44(1): 40-53. https://doi.org/10.1306/74d72973⁃2b21⁃11d7⁃8648000102c1865d
      Gao, C. L., Ye, D. L., Fang, C. M., 2011. Characteristics and Significance of Carbonate Rocks REE during Early Palaeozoic in Lower Yangtze Region. Reservoir Evaluation and Development, 1(Suppl. 1): 1-6 (in Chinese with English abstract).
      Gromet, L. P., Haskin, L. A., Korotev, R. L., et al., 1984. The "North American Shale Composite": Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48(12): 2469-2482. https://doi.org/10.1016/0016⁃7037(84)90298⁃9
      Guo, C. T., Song, H. Q., Liang, J., et al., 2020. Origin of Cambrian Dolomite from Well Milan 1 in Tadong Area and Its Significance to Dolomite Reservoirs. Oil & Gas Geology, 41(5): 953-964(in Chinese with English abstract).
      Hardie, L. A., 1987. Dolomitization: A Critical View of Some Current Views. Journal of Sedimentary Research, 57(1): 166-183. https://doi.org/10.1306/212f8ad5⁃2b24⁃11d7⁃8648000102c1865d
      Han, X. T., Bao, Z. Y., Xie, S. Y., 2016. Origin and Geochemical Characteristics of Dolomites in the Middle Permian Formation, SW Sichuan Basin, China. Earth Science, 41(1): 167-176(in Chinese with English abstract).
      He, X. Y., Shou, J. F., Shen, A. J., et al., 2014. Geochemical Characteristics and Origin of Dolomite: A Case Study from the Middle Assemblage of Majiagou Formation Member 5 of the West of Jingbian Gas Field, Ordos Basin, North China. Petroleum Exploration and Development, 41(3): 375-384(in Chinese with English abstract).
      Hu, W. X., Chen, Q., Wang, X. L., et al., 2010. REE Models for the Discrimination of Fluids in the Formation and Evolution of Dolomite Reservoirs. Oil & Gas Geology, 31(6): 810-818(in Chinese with English abstract).
      Hu, Z. G., Zheng, R. C., Hu, J. Z., et al., 2009. Geochemical Characteristics of Rare Earth Elements of Huanglong Formation Dolomites Reservoirs in Eastern Sichuan⁃Northern Chongqing Area. Acta Geologica Sinica, 83(6): 782-790(in Chinese with English abstract).
      Huang, Q. Y., Liu, W., Zhang, Y. Q., et al., 2015. Progress of Research on Dolomitization and Dolomite Reservoir. Advances in Earth Science, 30(5): 539-551(in Chinese with English abstract).
      Jin, M. D., Tan, X. C., Li, B. S., et al., 2019. Genesis of Dolomite in the Sinian Dengying Formation in the Sichuan Basin. Acta Sedimentologica Sinica, 37(3): 443-454(in Chinese with English abstract).
      Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth and Planetary Science Letters, 120(3-4): 409-430. https://doi.org/10.1016/0012⁃821x(93)90254⁃7
      Keith, M. L., Weber, J. N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10-11): 1787-1816. https://doi.org/10.1016/0016⁃7037(64)90022⁃5
      Kinsman, D. J. J., 1969. Interpretation of Sr2+ Concentrations in Carbonate Minerals and Rocks. SEPM Journal of Sedimentary Research, 39: 486-50. https://doi.org/10.1306/74d71cb7⁃2b21⁃11d7⁃8648000102c1865d
      Li, J. T., Liu, J. B., Sun, Y. C., et al., 2016. On the Lower Ordovician Lunshan Formation in Lower Yangtze Region, South China: Its Petrology, Stratigraphy and Palaeogeography. Journal of Palaeogeography, 18(3): 411-423(in Chinese with English abstract).
      Li, S. Y., Jin, F. Q., Wang, D. X., 1995. Geochemical Characteristics of Carbonate Rock Diagenesis. Experimental Petroleum Geology, 17(1): 55-62(in Chinese with English abstract).
      Li, Z. H., Yang, Y. H., 2005. Present Situation and Progress of Research on Dolomite Genesis. Oil & Gas Recovery Technology, 12(2): 5-8, 81(in Chinese with English abstract).
      Liu, A., Chen, L., Chen, X. H., et al., 2021. Carbon and Oxygen Isotopes Characteristics of Devonian in Central Hunan Depression and Its Paleoenvironmental Significance. Earth Science, 46(4): 1269-1281(in Chinese with English abstract).
      Liu, L. H., Du, X. D., Xu, S. L., et al., 2017. Characteristics and Formation of the Cambrian Dolomite in Middle⁃South Sichuan Basin, China. Journal of Jilin University (Earth Science Edition), 47(3): 775-784(in Chinese with English abstract).
      Liu, Z. B., Xing, F. C., Hu, H. R., et al., 2021. Multi⁃Origin of Dolomite in Lower Ordovician Tongzi Formation of Sichuan Basin, Western China. Earth Science, 46(2): 583-599(in Chinese with English abstract).
      Ma, X. H., Yang, Y., Wen, L., et al., 2019. Distribution and Exploration Direction of Medium⁃and Large⁃Sized Marine Carbonate Gas Fields in Sichuan Basin, SW China. Petroleum Exploration and Development, 46(1): 1-13(in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30001-1
      Meng, W. B., Wu, H. Z., Li, G. R., et al., 2014. Dolomitization Mechanisms and Influence on Reservoir Development in the Upper Permian Changxing Formation in Yuanba Area, Northern Sichuan Basin. Acta Petrologica Sinica, 30(3): 699-708(in Chinese with English abstract).
      Pang, Y. M., Zhang, X. H., Xiao, G. L., et al., 2016. Structural and Geological Characteristics of the South Yellow Sea Basin in Lower Yangtze Block. Geological Review, 62(3): 604-616(in Chinese with English abstract).
      Ren, Y., Zhong, D. K., Gao, C. L., et al., 2016. Geochemical Characteristics, Genesis and Hydrocarbon Significance of Dolomite in the Cambrian Longwangmiao Formation, Eastern Sichuan Basin. Acta Petrolei Sinica, 37(9): 1102-1115(in Chinese with English abstract).
      Su, Z. T., Chen, H. D., Xu, F. Y., et al., 2012. REE Characters of the Majiagou Dolomites in Ordos Basin. Journal of Jilin University (Earth Science Edition), 42(Suppl. 2): 53-61(in Chinese with English abstract).
      Sun, H. T., Zhang, Y. Y., Liu, H. L., et al., 2018. Typological Analysis and Genetic Mechanism of Dolomite in the Lower Cambrian Longwangmiao Formation, Eastern Sichuan Basin. Oil & Gas Geology, 39(2): 318-329 (in Chinese with English abstract).
      Wang, H. Y., Liu, S. W., Lei, X., 2013. Present Geothermal Regime of the Lower Yangtze Area, South China. Journal of China Coal Society, 38(5): 896-900(in Chinese with English abstract).
      Wang, Y. H., 1991. Study on Diagenesis of Marine Carbonate Rocks in Middle and Lower Yangtze Region. Scientific and Technological Literature Press, Beijing(in Chinese).
      Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth⁃Science Reviews, 52(1-3): 1-81. https://doi.org/10.1016/s0012⁃8252(00)00022⁃2
      Yuan, Y. S., Ma, Y. S., Hu, S. B., et al., 2006. Present⁃Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4): 1118-1126(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2006.04.025
      Zhang, Y. X., Zhou, J. Y., Chen, J. W., et al., 2021. Sedimentology and Porosity Structures of the Epicontinental Sea⁃Platform Fine⁃Grained Deposits of Mufushan Formation in Lower Yangtze Area. Earth Science, 46(1): 186-199(in Chinese with English abstract).
      Zhao, W. Z., Shen, A. J., Qiao, Z. F., et al., 2018. Genetic Types and Distinguished Characteristics of Dolomite and the Origin of Dolomite Reservoirs. Petroleum Exploration and Development, 45(6): 923-935(in Chinese with English abstract).
      Zhou, J. Y., Chen, J. W., Zhang, Y. X., et al., 2021. Paleoenvironment and Tectonic Background of Mufushan Formation in Lower Yangtze Area: Evidence from Geochemistry of Fine⁃Grained Mixed⁃Siliciclastic⁃Calcareous Deposits. Acta Geologica Sinica, 95(6): 1693-1711(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.06.003
      白卢恒, 石万忠, 张晓明, 等, 2021. 下扬子皖南宣泾地区二叠系海相页岩特征及其沉积环境. 地球科学, 46(6): 2204-2217. doi: 10.3799/dqkx.2020.372
      范德江, 栾光忠, 李师汤, 等, 1996. 南京汤山上震旦统及古生界白云岩成因初探. 海洋湖沼通报, (3): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB199603004.htm
      冯明友, 强子同, 沈平, 等, 2016. 四川盆地高石梯—磨溪地区震旦系灯影组热液白云岩证据. 石油学报, 37(5): 587-598. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605003.htm
      高长林, 叶德燎, 方成名, 2011. 下扬子早古生代碳酸盐岩的稀土元素特征及其意义. 油气藏评价与开发, 1(增刊1): 1-6.
      郭春涛, 宋海强, 梁洁, 等, 2020. 塔东地区米兰1井寒武系白云岩成因及其对储层的影响. 石油与天然气地质, 41(5): 953-964. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005007.htm
      韩晓涛, 鲍征宇, 谢淑云, 2016. 四川盆地西南中二叠统白云岩的地球化学特征及其成因. 地球科学, 41(1): 167-176. doi: 10.3799/dqkx.2016.013
      贺训云, 寿建峰, 沈安江, 等, 2014. 白云岩地球化学特征及成因: 以鄂尔多斯盆地靖西马五段中组合为例. 石油勘探与开发, 41(3): 375-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403018.htm
      胡文瑄, 陈琪, 王小林, 等, 2010. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 31(6): 810-818.
      胡忠贵, 郑荣才, 胡九珍, 等, 2009. 川东-渝北地区黄龙组白云岩储层稀土元素地球化学特征. 地质学报, 83(6): 782-790.
      黄擎宇, 刘伟, 张艳秋, 等, 2015. 白云石化作用及白云岩储层研究进展. 地球科学进展, 30(5): 539-551. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201505004.htm
      金民东, 谭秀成, 李毕松, 等, 2019. 四川盆地震旦系灯影组白云岩成因. 沉积学报, 37(3): 443-454.
      李家腾, 刘建波, 孙永超, 等, 2016. 华南下扬子区下奥陶统仑山组: 岩石学、地层学和古地理学. 古地理学报, 18(3): 411-423. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201603009.htm
      李双应, 金福全, 王道轩, 1995. 碳酸盐岩成岩作用的微量元素地球化学特征. 石油实验地质, 17(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD501.007.htm
      李振宏, 杨永恒, 2005. 白云岩成因研究现状及进展. 油气地质与采收率, 12(2): 5-8, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200502002.htm
      刘安, 陈林, 陈孝红, 等, 2021. 湘中坳陷泥盆系碳氧同位素特征及其古环境意义. 地球科学, 46(4): 1269-1281. doi: 10.3799/dqkx.2020.362
      刘丽红, 杜小弟, 徐守礼, 等, 2017. 四川盆地中南部寒武系白云岩特征及形成机制. 吉林大学学报(地球科学版), 47(3): 775-784. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201703011.htm
      刘志波, 邢凤存, 胡华蕊, 等, 2021. 四川盆地下奥陶统桐梓组白云岩多元成因. 地球科学, 46(2): 583-599. doi: 10.3799/dqkx.2020.026
      马新华, 杨雨, 文龙, 等, 2019. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向. 石油勘探与开发, 46(1): 1-13.
      孟万斌, 武恒志, 李国蓉, 等, 2014. 川北元坝地区长兴组白云石化作用机制及其对储层形成的影响. 岩石学报, 30(3): 699-708.
      庞玉茂, 张训华, 肖国林, 等, 2016. 下扬子南黄海沉积盆地构造地质特征. 地质论评, 62(3): 604-616. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201603006.htm
      任影, 钟大康, 高崇龙, 等, 2016. 川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义. 石油学报, 37(9): 1102-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201609004.htm
      苏中堂, 陈洪德, 徐粉燕, 等, 2012. 鄂尔多斯盆地马家沟组白云岩稀土元素地球化学特征. 吉林大学学报(地球科学版), 42(增刊S2): 53-61.
      孙海涛, 张玉银, 柳慧林, 等, 2018. 四川盆地东部下寒武统龙王庙组白云岩类型及其成因. 石油与天然气地质, 39(2): 318-329.
      王华玉, 刘绍文, 雷晓, 2013. 华南下扬子区现今地温场特征. 煤炭学报, 38(5): 896-900. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305033.htm
      王英华, 1991. 中、下扬子区海相碳酸盐岩成岩作用研究. 北京: 科学技术文献出版社.
      袁玉松, 马永生, 胡圣标, 等, 2006. 中国南方现今地热特征. 地球物理学报, 49(4): 1118-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200604024.htm
      张玉玺, 周江羽, 陈建文, 等, 2021. 下扬子地区幕府山组陆缘海-台地黑色细粒沉积岩系沉积学和孔隙结构特征. 地球科学, 46(1): 186-199. doi: 10.3799/dqkx.2019.283
      赵文智, 沈安江, 乔占峰, 等, 2018. 白云岩成因类型、识别特征及储集空间成因. 石油勘探与开发, 45(6): 909-921.
      周江羽, 陈建文, 张玉玺, 等, 2021. 下扬子地区幕府山组古环境和构造背景: 来自细粒混积沉积岩系元素地球化学的证据. 地质学报, 95(6): 1693-1711.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(4)

      Article views (596) PDF downloads(61) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return