• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 47 Issue 10
    Oct.  2022
    Turn off MathJax
    Article Contents
    Luo Genming, Hu Qingyang, 2022. What Triggered the Paleoproterozoic Great Oxidation Event?. Earth Science, 47(10): 3842-3844. doi: 10.3799/dqkx.2022.833
    Citation: Luo Genming, Hu Qingyang, 2022. What Triggered the Paleoproterozoic Great Oxidation Event?. Earth Science, 47(10): 3842-3844. doi: 10.3799/dqkx.2022.833

    What Triggered the Paleoproterozoic Great Oxidation Event?

    doi: 10.3799/dqkx.2022.833
    • Publish Date: 2022-10-25
    • loading
    • Campbell, I. H., Allen, C. M., 2008. Formation of Supercontinents Linked to Increases in Atmospheric Oxygen. Nature Geoscience, 1(8): 554-558. https://doi.org/10.1038/ngeo259
      Gaillard, F., Scaillet, B., Arndt, N. T., 2011. Atmospheric Oxygenation Caused by a Change in Volcanic Degassing Pressure. Nature, 478(7368): 229-232. https://doi.org/10.1038/nature10460
      Gumsley, A. P., Chamberlain, K. R., Bleeker, W., et al., 2017. Timing and Tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences of the United States of America, 114(8): 1811-1816. https://doi.org/10.1073/pnas.1608824114
      Holland, H. D., 1999. When did the Earth's Atmosphere Become Oxic? A Reply. The Geochemical News, 100: 20-22.
      Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth's Oxygen-Hydrogen Cycles. Nature, 534(7606): 241-244. https://doi.org/10.1038/nature18018
      Izon, G., Luo, G. M., Uveges, B. T., et al., 2022. Bulk and Grain-Scale Minor Sulfur Isotope Data Reveal Complexities in the Dynamics of Earth's Oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 119(13): e2025606119. https://doi.org/10.1073/pnas.2025606119
      Kadoya, S., Catling, D. C., Nicklas, R. W., et al., 2020. Mantle Data Imply a Decline of Oxidizable Volcanic Gases could Have Triggered the Great Oxidation. Nature Communications, 11: 2774. https://doi.org/10.1038/s41467-020-16493-1
      Konhauser, K. O., Pecoits, E., Lalonde, S. V., et al., 2009. Oceanic Nickel Depletion and a Methanogen Famine before the Great Oxidation Event. Nature, 458(7239): 750-753. https://doi.org/10.1038/nature07858
      Kump, L. R., Barley, M. E., 2007. Increased Subaerial Volcanism and the Rise of Atmospheric Oxygen 2.5 Billion Years ago. Nature, 448(7157): 1033-1036. https://doi.org/10.1038/nature06058
      Luo, G. M., Junium, C. K., Izon, G., et al., 2018. Nitrogen Fixation Sustained Productivity in the Wake of the Palaeoproterozoic Great Oxygenation Event. Nature Communications, 9: 978. https://doi.org/10.1038/s41467-018-03361-2
      Luo, G. M., Ono, S., Beukes, N. J., et al., 2016. Rapid Oxygenation of Earth's Atmosphere 2.33 Billion Years ago. Science Advances, 2(5): e1600134. https://doi.org/10.1126/sciadv.1600134
      Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506(7488): 307-315. https://doi.org/10.1038/nature13068
      Mao, H. K., Mao, W. L., 2020. Key Problems of the Four-Dimensional Earth System. Matter and Radiation at Extremes, 5(3): 038102. https://doi.org/10.1063/1.5139023
      Philippot, P., Ávila, J. N., Killingsworth, B. A., et al., 2018. Globally Asynchronous Sulphur Isotope Signals Require Re-Definition of the Great Oxidation Event. Nature Communications, 9: 2245. https://doi.org/10.1038/s41467-018-04621-x
      Planavsky, N. J., Asael, D., Hofmann, A., et al., 2014. Evidence for Oxygenic Photosynthesis Half a Billion Years before the Great Oxidation Event. Nature Geoscience, 7(4): 283-286. https://doi.org/10.1038/ngeo2122
      Poulton, S. W., Bekker, A., Cumming, V. M., et al., 2021. A 200-Million-Year Delay in Permanent Atmospheric Oxygenation. Nature, 592(7853): 232-236. https://doi.org/10.1038/s41586-021-03393-7
      Warke, M. R., Di Rocco, T., Zerkle, A. L., et al., 2020. The Great Oxidation Event Preceded a Paleoproterozoic Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 117(24): 13314-13320. https://doi.org/10.1073/pnas.2003090117
      Wogan, N. F., Catling, D. C., Zahnle, K. J., et al., 2022. Rapid Timescale for an Oxic Transition during the Great Oxidation Event and the Instability of Low Atmospheric O2. Proceedings of the National Academy of Sciences of the United States of America, 119(37): e2205618119. https://doi.org/10.1073/pnas.2205618119
      罗根明, 朱祥坤, 王水炯, 等, 2022. 元古宙早期大氧化事件的成因机制与气候生态效应. 中国科学: 地球科学, 52(9): 1665-1693. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202209001.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索
      Article views (1395) PDF downloads(410) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return