• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Kong Jiaxu, Zhuang Jianqi, Peng Jianbing, Zhan Jiewei, Ma Penghui, Mu Jiaqi, Wang Jie, Wang Shibao, Zheng Jia, Fu Yuting, 2023. Evaluation of Landslide Susceptibility in Chinese Loess Plateau Based on IV-RF and IV-CNN Coupling Models. Earth Science, 48(5): 1711-1729. doi: 10.3799/dqkx.2023.006
    Citation: Kong Jiaxu, Zhuang Jianqi, Peng Jianbing, Zhan Jiewei, Ma Penghui, Mu Jiaqi, Wang Jie, Wang Shibao, Zheng Jia, Fu Yuting, 2023. Evaluation of Landslide Susceptibility in Chinese Loess Plateau Based on IV-RF and IV-CNN Coupling Models. Earth Science, 48(5): 1711-1729. doi: 10.3799/dqkx.2023.006

    Evaluation of Landslide Susceptibility in Chinese Loess Plateau Based on IV-RF and IV-CNN Coupling Models

    doi: 10.3799/dqkx.2023.006
    • Received Date: 2022-09-23
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • Due to the complex interaction between geological environment and human activities, the Chinese Loess Plateau (CLP) is prone to frequent landslides. It is urgent to carry out landslide vulnerability assessment, selecting suitable influencing factors and training models. In this study, the CLP was taken as the study area. Based on field landslide survey and data collection, an evaluation system including topography, basic geological environment, meteorology and hydrology, human activities, soil physical and chemical properties, and vegetation coverage was built. The information model (IV) was used to connect the random forest model (RF) and convolutional neural network model (CNN) to build coupling models IV-RF and IV-CNN, and landslide susceptibility evaluation research was carried out. The results show that the accuracy of the coupling model (IV-RF, IV-CNN) is higher than that of the independent model (RF, CNN), and the AUC values of the four models are 0.916, 0.938, 0.878, and 0.853, respectively. The IV-CNN has stronger prediction ability and accuracy. The areas of extremely high, high, medium, low, and extremely low vulnerability areas in the IV-CNN model account for 8.78%, 7.47%, 15.34%, 19.82%, and 47.87% respectively, which are mainly distributed in the mountainous and loess hilly areas with complex geological environment and strong human activities in the south and east of the loess plateau. Slope, erosion type, landform type, clay content and distance from the road rank in the top five in the contribution rate analysis, and are the main control factors affecting the landslide development. The purpose of this study is to provide reliable scientific basis for the prediction and prevention of landslide disasters in the CLP, deepen the modeling idea for landslide vulnerability evaluation research, and optimize the uncertainty of independent model evaluation results.

       

    • loading
    • Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657-1674 (in Chinese with English abstract).
      Du, B., Zhao, Z. R., Hu, X., et al., 2021. Landslide Susceptibility Prediction Based on Image Semantic Segmentation. Computers & Geosciences, 155: 104860. https://doi.org/10.1016/j.cageo.2021.104860
      Fan, X. M., Fang, C. Y., Dai, L. X., et al., 2022. Near Real Time Prediction of Spatial Distribution Probability of Earthquake-Induced Landslides: Take the Lushan Earthquake on June 1, 2022 as an Example. Journal of Engineering Geology, 30(3): 729-739 (in Chinese with English abstract).
      Feng, L., Lin, H. S., Zhang, M. S., et al., 2019. Development and Evolution of Loess Vertical Joints on the Chinese Loess Plateau at Different Spatiotemporal Scales. Engineering Geology, 265: 105372. https://doi.org/10.1016/j.enggeo.2019.105372
      Gao, D. H., Chen, Z. H., Guo, N., et al., 2017. The Influence of Dry Density and Matric Suction on the Deformation and the Strength Characteristics of the Remolded Unsaturated Loess Soils. Chinese Journal of Rock Mechanics and Engineering, 36(3): 736-744 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb201703022
      González-Díez, A., Fernández-Maroto, G., Doughty, M. W., et al., 2014. Development of a Methodological Approach for the Accurate Measurement of Slope Changes Due to Landslides, Using Digital Photogrammetry. Landslides, 11: 615-628. https://doi.org/10.1007/s10346-013-0413-5
      Guo, F. Y., Meng, X. M., Li, Z. H., et al., 2015. Characteristics and Causes of Assembled Geo-Hazards Induced by the Rainstorm on 25th July 2013 in Tianshui City, Gansu, China. Mountain Research, 33(1): 100-107 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDYA201501014.htm
      Guo, Z. Z., Yin, K. L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312 (in Chinese with English abstract). http://www.researchgate.net/publication/324390254_Evaluation_of_Landslide_Susceptibility_Based_on_GIS_and_WOE-BP_Model
      Guzzetti, F., Ardizzone, F., Cardinali, M., et al., 2008. Distribution of Landslides in the Upper Tiber River Basin, Central Italy. Geomorphology, 96(1-2): 105-122. https://doi.org/10.1016/j.geomorph.2007.07.015
      Guzzetti, F., Mondini, A. C., Cardinali, M., et al., 2012: Landslide Inventory Maps: New Tools for an Old Problem. Earth-Science Reviews, 112(1-2): 42-66. https://doi.org/10.1016/j.earscirev.2012.02.001
      Hengl, T., MacMillan, R. A., 2019. Predictive Soil Mapping with R. Open GeoHub Foundation, Wageningen, 1-370.
      Hou, R. N., Li, Z., Chen, N. S., et al., 2023. Modeling of Debris Flow Susceptibility Assessment in Tianshan Based on Watershed Unit and Stacking Ensemble Algorithm. Earth Science, 48(5): 1892-1907 (in Chinese with English abstract).
      Hu, W. L., Cheng, W. C., Wen, S. J., et al., 2021. Effects of Chemical Contamination on Microscale Structural Characteristics of Intact Loess and Resultant Macroscale Mechanical Properties. CATENA, 203: 105361. https://doi.org/10.1016/j.catena.2021.105361
      Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
      Huang, F. M., Li, J. F., Wang, J. Y., et al., 2022a. Modelling Rules of Landslide Susceptibility Prediction Considering the Suitability of Linear Environmental Factors and Different Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 44-59 (in Chinese with English abstract).
      Huang, F. M., Shi, Y., Ouyang, W. P., et al., 2022b. Landslide Susceptibility Prediction Modeling Based on Weight of Evidence and Chi-Square Automatic Interactive Detection. Journal of Civil and Environmental Engineering, 44(5): 16-28 (in Chinese with English abstract).
      Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YSLX201801016&dbcode=CJFD&year=2018&dflag=pdfdown
      Huang, F. M., Zhang, J., Zhou, C. B., et al., 2020. A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction. Landslides, 17(1): 217-229. https://doi.org/10.1007/s10346-019-01274-9
      Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200703000.htm
      Huang, X. W., 2019. Hazard and Risk Evaluation of Fatal Landslides in China and the Landslides on the Loess Plateau (Dissertation). Lanzhou University, Lanzhou, 8-9 (in Chinese with English abstract).
      Kong, J. X., Zhuang, J. Q., Peng, J. B., et al., 2021. Spatial and Temporal Distribution Characteristics and Risk Simulation of Loess Micro Geomorphic Disaster Chain in Laolang Gully, Lanzhou. Journal of Engineering Geology, 29(5): 1401-1415 (in Chinese with English abstract).
      Kong, J. X., Zhuang, J. Q., Zhan, J. W., et al., 2021. A Landslide in Heifangtai, Northwest of the Chinese Loess Plateau: Triggered Factors, Movement Characteristics, and Failure Mechanism. Landslides, 18: 3407-3419. https://doi.org/10.1007/s10346-021-01752-z
      Leng, Y. Q., Peng, J. B., Wang, S., et al., 2020. Development of Water Sensitivity Index of Loess from Its Mechanical Properties. Engineering Geology, 280: 105918. https://doi.org/10.1016/j.enggeo.2020.105918
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0341816221001090
      Li, Y. R., Shi, W. H., Aydin, A., et al., 2019. Loess Genesis and Worldwide Distribution. Earth-Science Reviews, 201: 102947. https://doi.org/10.1016/j.earscirev.2019.102947
      Liu, K., Ye, W. J., Jing, H. J., et al., 2021. Microscopic Damage Identification and Macroscopic Mechanical Response of Loess in Seasonal Frozen Areas. Chinese Journal of Geotechnical Engineering, 43(S1): 192-197 (in Chinese with English abstract).
      Ma, P. H., Peng, J. B., Zhuang, J. Q., et al., 2022. Initiation Mechanism of Loess Mudflows by Flume Experiments. Journal of Earth Science, 33(5): 1166-1178. https://doi.org/10.1007/s12583-022-1660-y
      Malamud, B. D., Turcotte, D. L., Guzzetti, F., et al., 2004. Landslide Inventories and Their Statistical Properties. Earth Surface Processes and Landforms, 29: 687-711. https://doi.org/10.1002/esp.1064
      Merghadi, A., Yunus, A. P., Dou, J., et al., 2020. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Science Reviews, 207: 103255. https://doi.org/10.1016/j.earscirev.2020.103225
      Peng, J. B., Wang, S. K., Wang, Q. Y., et al., 2019. Distribution and Genetic Types of Loess Landslides in China. Journal of Asian Earth Sciences, 170: 329-350. https://doi.org/10.1016/j.jseaes.2018.11.015
      Peng, J. B., Wu, D., Duan, Z., et al., 2016. Disaster Characteristics and Destructive Mechanism of Typical Loess Landslide Cases Triggered by Human Engineering Activities. Journal of Southwest Jiaotong University, 51(5): 971-980 (in Chinese with English abstract). http://www.cqvip.com/QK/92056X/20165/670271568.html
      Qiu, H. J., Regmi, A. D., Cui, P., et al., 2016. Size Distribution of Loess Slides in Relation to Local Slope Height within Different Slope Morphologies. CATENA, 145: 155-163. https://doi.org/10.1016/j.catena.2016.06.005
      Reichenbach, P., Rossi, M., Malamud, B. D., et al., 2018. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Science Reviews, 180: 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001
      Samia, J., Arnaud, T., Bregt, A., et al., 2017. Do Landslides Follow Landslides? Insights in Path Dependency from a Multi-Temporal Landslide Inventory. Landslides, 4: 547-558. https://doi.org/10.1007/s10346-016-0739-x
      Segoni, S., Pappafico, G., Luti, T., et al., 2020. Landslide Susceptibility Assessment in Complex Geological Settings: Sensitivity to Geological Information and Insights on Its Parameterization. Landslides, 17(10): 2443-2453. doi: 10.1007/s10346-019-01340-2
      Tian, S. J., Zhang, S. S., Tang, Q. S., et al., 2019. Comparative Study of Landslide Susceptibility Assessment Based on Different Evaluation Units. Journal of Natural Disasters, 28(6): 137-145 (in Chinese with English abstract).
      Tu, X. B., Kwong, A. K. L., Dai, F. C., et al., 2009. Field Monitoring of Rainfall Infiltration in a Loess Slope and Analysis of Failure Mechanism of Rainfall-Induced Landslides. Engineering Geology, 105(1-2): 134-150. https://doi.org/10.1016/j.enggeo.2008.11.011
      Wang, J. D., Gu, T. F., Zhang, M. S., et al., 2019a. Experimental Study of Loess Disintegration Characteristics. Earth Surface Processes and Landforms, 44(6): 1317-1329. https://doi.org/10.1002/esp.4575
      Wang, Y., Fang, Z. C., Hong, H. Y., 2019b. Comparison of Convolutional Neural Networks for Landslide Susceptibility Mapping in Yanshan County, China. The Science of the Total Environment, 666: 975-993. https://doi.org/10.1016/j.scitotenv.2019.02.263
      Wang, S. B., Zhuang, J. Q., Zheng, J., et al., 2021. Landslide Susceptibility Evaluation Based on Deep Learning along Kangding-Litang Section of Sichuan-Tibet Railway. Journal of Engineering Geology, 30(8): 909-918 (in Chinese with English abstract).
      Wang, Y., Fang, Z. C., Niu, R. Q., et al., 2021. Landslide Susceptibility Analysis Based on Deep Learning. Journal of Geo-Information Science, 23(12): 2244-2260 (in Chinese with English abstract).
      Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330(in Chinese with English abstract).
      Wu, X. L., Yang, J. Y., Niu, R. Q., 2020. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network. Geomatics and Information Science of Wuhan University, 45(8): 1223-1232 (in Chinese with English abstract).
      Xu, C., Dai, F. C., Yao, X., et al., 2010. GIS Platform and Certainty Factor Analysis Method Based Wenchuan Earthquake-Induced Landslide Susceptibility Evaluation. Journal of Engineering Geology, 18(1): 15-26 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201001003
      Xu, S. H., Liu, J. P., Wang, X. H., et al., 2020. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province. Geomatics and Information Science of Wuhan University, 45(8): 1214-1222 (in Chinese with English abstract).
      Xu, Y. R., Allen, M. B., Zhang, W. H., et al., 2020. Landslide Characteristics in the Loess Plateau, Northern China. Geomorphology, 359: 107150. https://doi.org/10.1016/j.geomorph.2020.107150
      Yang, Q., Wang, G. F., Ding, W. C., et al., 2021. Susceptibility and Accuracy Evaluation of Regional Landsldie Based on Multiple Hybrid Models. Journal of Natural Disasters, 30(2): 36-51 (in Chinese with English abstract).
      Zhang, H. J., Song, Y. X., Xu, S. L., et al., 2021. Combining a Class-Weighted Algorithm and Machine Learning Models in Landslide Susceptibility Mapping: A Case Study of Wanzhou Section of the Three Gorges Reservoir, China. Computers & Geosciences, 158: 104966. https://doi.org/10.1016/j.cageo.2021.104966
      Zhang, M. S., Li, T. L., 2011. Triggering Factors and Forming Mechanism of Loess Landslides. Journal of Engineering Geology, 19(4): 530-540 (in Chinese with English abstract). http://www.researchgate.net/publication/285444566_Triggering_factors_and_forming_mechanism_of_loess_landslides
      Zhang, W. G., He, Y. W., Wang, L. Q., et al., 2023. Machine Learning Solution for Landslide Susceptibility Based on Hydrographic Division: A Case Study of Fengjie County in Chongqing. Earth Science, 48(5): 2024-2038 (in Chinese with English abstract).
      Zhang, X. C., Pei, X. J., Zhang, M. S., et al., 2018. Experimental Study on Mechanism of Flow Slide of Loess Landslides Triggered by Strong Earthquake: A Case Study in Dangjiacha, Ningxia Province. Journal of Engineering Geology, 26(5): 1219-1226 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201805013.htm
      Zhang, Z. H., 1981. Regional Geological and Morphological Characteristics and Development of Soil Erosion in the Loess Plateau, China. Acta Geologica Sinica, (4): 308-320, 326 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE198104007.htm
      Zhou, C., Yin, K. L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876 (in Chinese with English abstract).
      Zhou, P., Deng, H., Zhang, W. J., et al., 2022. Landslide Susceptibility Evaluation Based on Information Value Model and Machine Learning Method: A Case Study of Lixian County, Sichuan Province. Scientia Geographica Sinica, 42(9): 1665-1675 (in Chinese with English abstract).
      Zhuang, J. Q., Cui, P., Ge, Y. G., et al., 2010. Risk Assessment of Collapses and Landslides Caused by 5.12 Wenchuan Earthquake—A Case Study of Dujiangyan-Wenchuan Highway. Chinese Journal of Rock Mechanics and Engineering, 29(S2): 3735-3742 (in Chinese with English abstract). http://www.cqvip.com/QK/71135X/201107/35616544.html
      Zhuang, J. Q., Peng, J. B., Wang, G. H., et al., 2018. Distribution and Characteristics of Landslide in Loess Plateau: A Case Study in Shaanxi Province. Engineering Geology, 236: 89-96. https://doi.org/10.1016/j.enggeo.2017.03.001
      Zhuang, J. Q., Peng, J. B., Zhu, Y., 2020. Study of the Effects of Clay Content on Loess Slope Failure Mode and Loess Strength. Bulletin of Engineering Geology and the Environment, 80: 1999-2009. https://doi.org/10.1007/s10064-020-02055-8
      Zou, Q., Jiang, H., Cui, P., et al., 2021. A New Approach to Assess Landslide Susceptibility Based on Slope Failure Mechanisms. CATENA, 204: 105388. https://doi.org/10.1016/j.catena.2021.105388
      窦杰, 向子林, 许强, 等, 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学, 48(5): 1657-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305001.htm
      范宣梅, 方成勇, 戴岚欣, 等, 2022. 地震诱发滑坡空间分布概率近实时预测研究: 以2022年6月1日四川芦山地震为例. 工程地质学报, 30(3): 729-739. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202203012.htm
      高登辉, 陈正汉, 郭楠, 等, 2017. 干密度和基质吸力对重塑非饱和黄土变形与强度特性的影响. 岩石力学与工程学报, 36(3): 736-744. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703023.htm
      郭富赟, 孟兴民, 黎志恒, 等, 2015. 天水市"7·25"群发性地质灾害特征及成因. 山地学报, 33(1): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201501014.htm
      郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555
      侯儒宁, 李志, 陈宁生, 等, 2023. 基于流域单元和堆叠集成模型的天山地区泥石流易发性评估建模. 地球科学, 48(5): 1892-1907. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305027.htm
      黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305003.htm
      黄发明, 李金凤, 王俊宇, 等, 2022a. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律. 地质科技通报, 41(2): 44-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202202005.htm
      黄发明, 石雨, 欧阳慰平, 等, 2022b. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测. 土木与环境工程学报(中英文), 44(5): 16-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202205003.htm
      黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
      黄润秋, 2007.20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
      黄晓维, 2019. 中国致命性滑坡和黄土高原滑坡的灾害与风险评价(硕士学位论文). 兰州: 兰州大学, 8-9.
      孔嘉旭, 庄建琦, 彭建兵, 等, 2021. 兰州老狼沟黄土微地貌灾害链时空分布特征与危险性模拟研究. 工程地质学报, 29(5): 1401-1415. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202105016.htm
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      刘宽, 叶万军, 景宏君, 等, 2021. 季冻区黄土微观损伤识别与宏观力学响应研究. 岩土工程学报, 43(S1): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S1037.htm
      彭建兵, 吴迪, 段钊, 等, 2016. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理. 西南交通大学学报, 51(5): 971-980. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201605021.htm
      田述军, 张珊珊, 唐青松, 等, 2019. 基于不同评价单元的滑坡易发性评价对比研究. 自然灾害学报, 28(6): 137-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201906015.htm
      王世宝, 庄建琦, 郑佳, 等, 2021. 基于深度学习的川藏铁路康定——理塘段滑坡易发性评价. 工程地质学报, 30(8): 909-918. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202203028.htm
      王毅, 方志策, 牛瑞卿, 等, 2021. 基于深度学习的滑坡灾害易发性分析. 地球信息科学学报, 23(12): 2244-2260. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202112012.htm
      吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
      武雪玲, 杨经宇, 牛瑞卿, 2020. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法. 武汉大学学报(信息科学版), 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
      许冲, 戴福初, 姚鑫, 等, 2010. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价. 工程地质学报, 18(1): 15-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201001003.htm
      徐胜华, 刘纪平, 王想红, 等, 2020. 熵指数融入支持向量机的滑坡灾害易发性评价方法——以陕西省为例. 武汉大学学报(信息科学版), 45(8): 1214-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008012.htm
      杨强, 王高峰, 丁伟翠, 等, 2021. 多种组合模型的区域滑坡易发性及精度评价. 自然灾害学报, 30(2): 36-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202102004.htm
      张茂省, 李同录, 2011. 黄土滑坡诱发因素及其形成机理研究. 工程地质学报, 19(4): 530-540. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201104015.htm
      仉文岗, 何昱苇, 王鲁琦, 等, 2023. 基于水系分区的滑坡易发性机器学习分析方法——以重庆市奉节县为例. 地球科学, 48(5): 2024-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305028.htm
      张晓超, 裴向军, 张茂省, 等, 2018. 强震触发黄土滑坡流滑机理的试验研究——以宁夏党家岔滑坡为例. 工程地质学报, 26(5): 1219-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805013.htm
      张宗祜, 1981. 我国黄土高原区域地质地貌特征及现代侵蚀作用. 地质学报, (4): 308-320, 326. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198104007.htm
      周超, 殷坤龙, 曹颖, 等, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071
      周萍, 邓辉, 张文江, 等, 2022. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例. 地理科学, 42(9): 1665-1675. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX202209016.htm
      庄建琦, 崔鹏, 葛永刚, 等, 2010. "5·12"汶川地震崩塌滑坡危险性评价——以都汶公路沿线为例. 岩石力学与工程学报, 29(S2): 3735-3742. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2043.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(5)

      Article views (1125) PDF downloads(123) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return