• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 6
    Jun.  2023
    Turn off MathJax
    Article Contents
    Meng Yujing, Chen Honghan, Zhao Yanchao, Luo Yang, He Faqi, Wang Guozhuang, Dang Wenbin, Xu Yanzheng, 2023. Characterization of Architecture of Intraplate Strike-Slip Faults in Yanchang Formation of Jinghe Oilfield in Southern Ordos Basin. Earth Science, 48(6): 2281-2293. doi: 10.3799/dqkx.2023.007
    Citation: Meng Yujing, Chen Honghan, Zhao Yanchao, Luo Yang, He Faqi, Wang Guozhuang, Dang Wenbin, Xu Yanzheng, 2023. Characterization of Architecture of Intraplate Strike-Slip Faults in Yanchang Formation of Jinghe Oilfield in Southern Ordos Basin. Earth Science, 48(6): 2281-2293. doi: 10.3799/dqkx.2023.007

    Characterization of Architecture of Intraplate Strike-Slip Faults in Yanchang Formation of Jinghe Oilfield in Southern Ordos Basin

    doi: 10.3799/dqkx.2023.007
    • Received Date: 2022-08-26
    • Publish Date: 2023-06-25
    • The architecture of intraplate strike-slip faults plays an important role in controlling reservoir properties as well as hydrocarbon migration and accumulation. In the process of exploration and development of strike-slip fault-controlled fracturing reservoirs, the architecture of the strike-slip fault zone needs to be characterized because of its high heterogeneity. Taking strike-slip fault zones of the Yanchang Formation of the Jinghe oilfield in the southern Ordos basin as an example, in this paper it conducted fault segmentation along the fault strike and lateral zonation along the fault dip by integrating core, logging and seismic data. In this paper it puts forward a method to quantitatively detect damage zone boundaries by cumulative curves of comprehensive fracture index log (CFI) and fault shape index attribute (FSI). The results show that strike-slip fault zones of the Yanchang Formation in the Jinghe oilfield are mainly composed of transtensional and strike-slip segments, and transpressional segments are rarely developed. CFI and FSI are positively correlated with fracture density, and damage zone boundaries can be detected according to the gradient change of the cumulative curves of CFI and FSI. The width of a single fault within the strike-slip fault zones in the Yanchang Formation of the Jinghe oilfield is mainly between 160-300 m, and the average width of transtensional segments is the largest, followed by transpressional and strike-slip segments.

       

    • loading
    • Alaei, B., Torabi, A., 2017. Seismic Imaging of Fault Damaged Zone and Its Scaling Relation with Displacement. Interpretation, 5(4): 83-93. https://doi.org/10.1190/int-2016-0230.1
      Ampuero, J. P., Mao, X. L., 2017. Upper Limit on Damage Zone Thickness Controlled by Seismogenic Depth. In: Thomas, M. Y., Mitchell, T. M., Bhat, H. S., eds., Fault Zone Dynamic Processes: Evolution of Fault Properties during Seismic Rupture. John Wiley & Sons, Inc., Hoboken, NJ, USA, 243-253. https://doi.org/10.1002/9781119156895.ch13
      Bao, H. P., Guo, W., Liu, G., et al., 2020. Tectonic Evolution in the Southern Ordos Block and Its Significance in the Tectono-Depositional Differentiation in the Interior of the Ordos Basin. Chinese Journal of Geology, 55(3): 703-725(in Chinese with English abstract).
      Berg, S. S., Skar, T., 2005. Controls on Damage Zone Asymmetry of a Normal Fault Zone: Outcrop Analyses of a Segment of the Moab Fault, SE Utah. Journal of Structural Geology, 27(10): 1803-1822. https://doi.org/10.1016/j.jsg.2005.04.012
      Brogi, A., 2008. Fault Zone Architecture and Permeability Features in Siliceous Sedimentary Rocks: Insights from the Rapolano Geothermal Area (Northern Apennines, Italy). Journal of Structural Geology, 30(2): 237-256. https://doi.org/10.1016/j.jsg.2007.10.004
      Caine, J. S., Evans, J. P., Forster, C. B., 1996. Fault Zone Architecture and Permeability Structure. Geology, 24(11): 1025. https://doi.org/10.1130/0091-7613(1996)0241025:fzaaps>2.3.co;2 doi: 10.1130/0091-7613(1996)0241025:fzaaps>2.3.co;2
      Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
      Choi, J. H., Jin, K., Enkhbayar, D., et al., 2012. Rupture Propagation Inferred from Damage Patterns, Slip Distribution, and Segmentation of the 1957 Mw 8.1 Gobi-Altay Earthquake Rupture along the Bogd Fault, Mongolia. Journal of Geophysical Research: Solid Earth, 117(B12): B12401. https://doi.org/10.1029/2011JB008676
      Chopra, S., Marfurt, K., 2007. Curvature Attribute Applications to 3D Surface Seismic Data. The Leading Edge, 26(4): 404-414. https://doi.org/10.1190/1.2723201
      de Joussineau, G., Aydin, A., 2007. The Evolution of the Damage Zone with Fault Growth in Sandstone and Its Multiscale Characteristics. Journal of Geophysical Research: Solid Earth, 112(B12): B12401. https://doi.org/10.1029/2006jb004711
      de Joussineau, G., Aydin, A., 2009. Segmentation along Strike-Slip Faults Revisited. Pure and Applied Geophysics, 166(10): 1575-1594. https://doi.org/10.1007/s00024-009-0511-4
      Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      Deng, S., Zhao, R., Kong, Q. F., et al., 2022. Two Distinct Strike-Slip Fault Networks in the Shunbei Area and Its Surroundings, Tarim Basin: Hydrocarbon Accumulation, Distribution, and Controlling Factors. AAPG Bulletin, 106(1): 77-102. https://doi.org/10.1306/07202119113
      Ding, Z. W., Wang, R. J., Chen, F. F., et al., 2020. Origin, Hydrocarbon Accumulation and Oil-Gas Enrichment of Fault-Karst Carbonate Reservoirs: A Case Study of Ordovician Carbonate Reservoirs in South Tahe Area of Halahatang Oilfield, Tarim Basin. Petroleum Exploration and Development, 47(2): 286-296(in Chinese with English abstract).
      Fossen, H., Tikoff, B., Teyssier, C., et al., 1994. Strain Modeling of Transpressional and Transtensional Deformation. Norsk Geologisk Tidsskrift, 74: 134-145.
      He, F. Q., Liang, C. C., Lu, C., et al., 2020. Identification and Description of Fault-Fracture Bodies in Tight and Low Permeability Reservoirs in Transitional Zone at the South Margin of Ordos Basin. Oil & Gas Geology, 41(4): 710-718(in Chinese with English abstract).
      Huang, Y. H., Ampuero, J. P., 2011. Pulse-Like Ruptures Induced by Low-Velocity Fault Zones. Journal of Geophysical Research: Solid Earth, 116(B12): B12307. https://doi.org/10.1029/2011JB008684
      Iacopini, D., Butler, R. W. H., Purves, S., et al., 2016. Exploring the Seismic Expression of Fault Zones in 3D Seismic Volumes. Journal of Structural Geology, 89: 54-73. https://doi.org/10.1016/j.jsg.2016.05.005
      Kim, Y. S., Sanderson, D. J., 2006. Structural Similarity and Variety at the Tips in a Wide Range of Strike-Slip Faults: A Review. Terra Nova, 18(5): 330-344. https://doi.org/10.1111/j.1365-3121.2006.00697.x
      Li, P. J., Chen, H. H., Tang, D. Q., et al., 2017. Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China. Earth Science, 42(1): 93-104(in Chinese with English abstract).
      Liao, Z. H., Liu, H., Carpenter, B. M., et al., 2019. Analysis of Fault Damage Zones Using Three-Dimensional Seismic Coherence in the Anadarko Basin, Oklahoma. AAPG Bulletin, 103(8): 1771-1785. https://doi.org/10.1306/1219181413417207
      Lin, A. M., Yamashita, K., 2013. Spatial Variations in Damage Zone Width along Strike-Slip Faults: An Example from Active Faults in Southwest Japan. Journal of Structural Geology, 57: 1-15. https://doi.org/10.1016/j.jsg.2013.10.006
      Liu, H. P., Luo, Y., Meng, Y. J., et al., 2021. Effects of Pore Structure on the Moveable Oil Saturation in Water-Driven Tight Oil Sandstone Reservoirs. Journal of Petroleum Science and Engineering, 207: 109142. https://doi.org/10.1016/j.petrol.2021.109142
      Liu, H. P., Zhao, Y. C., Luo, Y., et al., 2020. Origin of the Reservoir Quality Difference between Chang 8 and Chang 9 Member Sandstones in the Honghe Oil Field of the Southern Ordos Basin, China. Journal of Petroleum Science and Engineering, 185: 106668. https://doi.org/10.1016/j.petrol.2019.106668
      Liu, Y., Wu, K. Y., Wang, X., et al., 2017. Architecture of Buried Reverse Fault Zone in the Sedimentary Basin: A Case Study from the Hong-Che Fault Zone of the Junggar Basin. Journal of Structural Geology, 105: 1-17. https://doi.org/10.1016/j.jsg.2017.11.002
      Liu, Y. Q., Deng, S., 2022. Structural Analysis of Intraplate Strike-Slip Faults with Small to Medium Displacement: A Case Study of the Shunbei 4 Fault, Tarim Basin. Journal of China University of Mining & Technology, 51(1): 124-136(in Chinese with English abstract).
      Luo, Y., Wang, Y. Z., Liu, H. P., et al., 2020. Overpressure Controlling Factors for Tectonic Fractures in Near-Source Tight Reservoirs in the Southwest Ordos Basin, China. Journal of Petroleum Science and Engineering, 188: 106818. https://doi.org/10.1016/j.petrol.2019.106818
      Lü, W. Y., Zeng, L. B., Liu, Z. Q., et al., 2016. Fracture Responses of Conventional Logs in Tight-Oil Sandstones: A Case Study of the Upper Triassic Yanchang Formation in Southwest Ordos Basin, China. AAPG Bulletin, 100(9): 1399-1417. https://doi.org/10.1306/04041615129
      Ma, D. B., Wang, Z. C., Duan, S. F., et al., 2018. Strike-Slip Faults and Their Significance for Hydrocarbon Accumulation in Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805(in Chinese with English abstract).
      Mann, P., 2007. Global Catalogue, Classification and Tectonic Origins of Restraining- and Releasing Bends on Active and Ancient Strike-Slip Fault Systems. Geological Society, London, Special Publications, 290(1): 13-142. https://doi.org/10.1144/sp290.2
      Peacock, D. C. P., Dimmen, V., Rotevatn, A., et al., 2017. A Broader Classification of Damage Zones. Journal of Structural Geology, 102: 179-192. https://doi.org/10.1016/j.jsg.2017.08.004
      Rafiq, A., Eaton, D. W., McDougall, A., et al., 2016. Reservoir Characterization Using Microseismic Facies Analysis Integrated with Surface Seismic Attributes. Interpretation, 4(2): 167-181. https://doi.org/10.1190/int-2015-0109.1
      Riley, P. R., Goodwin, L. B., Lewis, C. J., 2010. Controls on Fault Damage Zone Width, Structure, and Symmetry in the Bandelier Tuff, New Mexico. Journal of Structural Geology, 32(6): 766-780. https://doi.org/10.1016/j.jsg.2010.05.005
      Storti, F., Holdsworth, R. E., Salvini, F., 2003. Intraplate Strike-Slip Deformation Belts. Geological Society, London, Special Publications, 210(1): 1-14. https://doi.org/10.1144/gsl.sp.2003.210.01.01
      Sun, Q. Q., Fan, T. L., Gao, Z. Q., et al., 2021. New Insights on the Geometry and Kinematics of the Shunbei 5 Strike-Slip Fault in the Central Tarim Basin, China. Journal of Structural Geology, 150: 104400. https://doi.org/10.1016/j.jsg.2021.104400
      Teng, C. Y., Cai, Z. X., Hao, F., et al., 2020. Structural Geometry and Evolution of an Intracratonic Strike-Slip Fault Zone: a Case Study from the North SB5 Fault Zone in the Tarim Basin, China. Journal of Structural Geology, 140: 104159. https://doi.org/10.1016/j.jsg.2020.104159
      Torabi, A., Berg, S. S., 2011. Scaling of Fault Attributes: A Review. Marine and Petroleum Geology, 28(8): 1444-1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003
      Torabi, A., Ellingsen, T. S. S., Johannessen, M. U., et al., 2020. Fault Zone Architecture and Its Scaling Laws: Where does the Damage Zone Start and Stop? Geological Society, London, Special Publications, 496(1): 99-124. https://doi.org/10.1144/sp496-2018-151
      Wang, W. F., Zhou, W. W., Xu, S. L., 2017. Formation and Evolution of Concealed Fault Zone in Sedimentary Basins and Its Significance in Hydrocarbon Accumulation. Earth Science, 42(4): 613-624(in Chinese with English abstract).
      Wang, X., 2021. Characteristics of Chang 8 Strike-Slip Fault in Jinghe and Its Influence on Oil and Gas Enrichment. Petrochemical Industry Application, 40(6): 101-105(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5285.2021.06.024
      Wu, G. H., Gao, L. H., Zhang, Y. T., et al., 2019. Fracture Attributes in Reservoir-Scale Carbonate Fault Damage Zones and Implications for Damage Zone Width and Growth in the Deep Subsurface. Journal of Structural Geology, 118: 181-193. https://doi.org/10.1016/j.jsg.2018.10.008
      Wu, G. H., Kim, Y. S., Su, Z., et al., 2020. Segment Interaction and Linkage Evolution in a Conjugate Strike-Slip Fault System from the Tarim Basin, NW China. Marine and Petroleum Geology, 112: 104054. https://doi.org/10.1016/j.marpetgeo.2019.104054
      Xu, L. M., Zhou, L. F., Zhang, Y. K., et al., 2006. Characteristics and Tectonic Setting of Tectono-Stress Field of Ordos Basin. Geotectonica et Metallogenia, 30(4): 455-462(in Chinese with English abstract).
      Xu, X. Y., Wang, W. F., 2020. The Recognition of Potential Fault Zone in Ordos Basin and Its Reservoir Control. Earth Science, 45(5): 1754-1768(in Chinese with English abstract).
      Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: a Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787(in Chinese with English abstract).
      Zhou, B. W., Chen, H. H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike-Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451(in Chinese with English abstract).
      包洪平, 郭玮, 刘刚, 等, 2020. 鄂尔多斯地块南缘构造演化及其对盆地腹部的构造-沉积分异的效应. 地质科学, 55(3): 703-725. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202003005.htm
      丁志文, 汪如军, 陈方方, 等, 2020. 断溶体油气藏成因、成藏及油气富集规律: 以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例. 石油勘探与开发, 47(2): 286-296. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002009.htm
      何发岐, 梁承春, 陆骋, 等, 2020. 鄂尔多斯盆地南缘过渡带致密-低渗油藏断缝体的识别与描述. 石油与天然气地质, 41(4): 710-718. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004006.htm
      李培军, 陈红汉, 唐大卿, 等, 2017. 塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系. 地球科学, 42(1): 93-104. doi: 10.3799/dqkx.2017.007
      刘雨晴, 邓尚, 2022. 板内中小滑移距走滑断裂发育演化特征精细解析: 以塔里木盆地顺北4号走滑断裂为例. 中国矿业大学学报, 51(1): 124-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202201012.htm
      马德波, 汪泽成, 段书府, 等, 2018. 四川盆地高石梯-磨溪地区走滑断层构造特征与天然气成藏意义. 石油勘探与开发, 45(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805006.htm
      王伟锋, 周维维, 徐守礼, 2017. 沉积盆地断裂趋势带形成演化及其控藏作用. 地球科学, 42(4): 613-624. doi: 10.3799/dqkx.2017.048
      王旭, 2021. 泾河长8走滑断裂特征及其对油气富集的影响. 石油化工应用, 40(6): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH202106024.htm
      徐黎明, 周立发, 张义楷, 等, 2006. 鄂尔多斯盆地构造应力场特征及其构造背景. 大地构造与成矿学, 30(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200604006.htm
      徐兴雨, 王伟锋, 2020. 鄂尔多斯盆地隐性断裂识别及其控藏作用. 地球科学, 45(5): 1754-1768. doi: 10.3799/dqkx.2019.175
      云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm
      周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(16)

      Article views (761) PDF downloads(152) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return