Citation: | Lei Chuang, Ye Jiaren, Yin Shiyan, Wu Jingfu, Jing Yuqian, 2024. Constraints of Paleoclimate and Paleoenvironment on Organic Matter Enrichment in Lishui Sag, East China Sea Basin: Evidence from Element Geochemistry of Paleocene Mudstones. Earth Science, 49(7): 2359-2372. doi: 10.3799/dqkx.2023.011 |
Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific: Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology, 47(1-2): 125-148. https://doi.org/10.1016/0037-0738(86)90075-8
|
Adegoke, A. K., Abdullah, W. H., Hakimi, M. H., et al., 2015. Geochemical Characterisation and Organic Matter Enrichment of Upper Cretaceous Gongila Shales from Chad (Bornu) Basin, Northeastern Nigeria: Bioproductivity Versus Anoxia Conditions. Journal of Petroleum Science and Engineering, 135: 73-87. https://doi.org/10.1016/j.petrol.2015.08.012
|
Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
|
Cai, X. F., 1994. Paleoclimate as a Necessary Factor in Basin Analysis. Sedimentary Facies and Palaeogeography, 14(2): 42-46 (in Chinese).
|
Calvert, S. E., Pedersen, T. F., 2007. Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation and Application. Developments in Marine Geology. Elsevier, Amsterdam, 567-644. https://doi.org/10.1016/s1572-5480(07)01019-6
|
Cui, T., Jiao, Y. Q., Du, Y. S., et al., 2013. Analysis on Paleosalinity of Sedimentary Environment of Bauxite in Wuchuan-Zheng'an-Daozhen Area, Northern Guizhou Province. Geological Science and Technology Information, 32(1): 46-51 (in Chinese with English abstract).
|
Cullers, R. L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51(3): 181-203. https://doi.org/10.1016/s0024-4937(99)00063-8
|
Ding, X. J., Liu, G. D., Huang, Z. L., et al., 2016. Controlling Function of Organic Matter Supply and Preservation on Formation of Source Rocks. Earth Science, 41(5): 832-842 (in Chinese with English abstract).
|
Fan, Y. H., Qu, H. J., Wang, H., et al., 2012. The Application of Trace Elements Analysis to Identifying Sedimentary Media Environment: A Case Study of Late Triassic Strata in the Middle Part of Western Ordos Basin. Geology in China, 39(2): 382-389 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2012.02.010
|
Fu, C., Li, S. L., Li, S. L., et al., 2022. Genetic Types of Mudstone in a Closed-Lacustrine to Open-Marine Transition and Their Organic Matter Accumulation Patterns: A Case Study of the Paleocene Source Rocks in the East China Sea Basin. Journal of Petroleum Science and Engineering, 208: 109343. https://doi.org/10.1016/j.petrol.2021.109343
|
Gao, Y. D., Lin, H. M., Wang, X. D., et al., 2022. Geochemical Constraints on the Sedimentary Environment of Wenchang Formation in Pearl River Mouth Basin and Its Paleoenvironmental Implications. Geoscience, 36(1): 118-129 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2022.01.012
|
Garzanti, E., Padoan, M., Setti, M., et al., 2013. Weathering Geochemistry and Sr-Nd Fingerprints of Equatorial Upper Nile and Congo Muds. Geochemistry, Geophysics, Geosystems, 14(2): 292-316. https://doi.org/10.1002/ggge.20060
|
Ge, H. P., Chen, X. D., Diao, H., et al., 2012. An Analysis of Oil Geochemistry and Sources in Lishui Sag, East China Sea Basin. China Offshore Oil and Gas, 24(4): 8-12, 31 (in Chinese with English abstract).
|
Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2011. Lacustrine Source Rock Deposition in Response to Co-Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 42(4): 323-339. https://doi.org/10.1016/j.orggeochem.2011.01.010
|
Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. . Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-y
|
Hu, J. J., Ma, Y. S., Wang, Z. X., et al., 2017. Palaeoenvironment and Palaeoclimate of the Middle to Late Jurassic Revealed by Geochemical Records in Northern Margin of Qaidam Basin. Journal of Palaeogeography (Chinese Edition), 19(3): 480-490 (in Chinese with English abstract).
|
Jaraula, C. M. B., Siringan, F. P., Klingel, R., et al., 2014. Records and Causes of Holocene Salinity Shifts in Laguna de Bay, Philippines. Quaternary International, 349: 207-220. https://doi.org/10.1016/j.quaint.2014.08.048
|
Jiang, L., Li, B. H., Zhong, S. L., et al., 2004. Biostratigraphy and Paleoenvironment of the Yueguifeng Formation in the Taipei Depression of the Continental Shelf Basin of the East China Sea. Marine Geology & Quaternary Geology, 24(1): 37-42 (in Chinese with English abstract).
|
Jiang, Z. L., Li, Y. J., Du, H. L., et al., 2015. The Cenozoic Structural Evolution and Its Influences on Gas Accumulation in the Lishui Sag, East China Sea Shelf Basin. Journal of Natural Gas Science and Engineering, 22: 107-118. https://doi.org/10.1016/j.jngse.2014.11.024
|
Jin, S., Ma, P. F., Guo, H., et al., 2022. Genesis of Mesoproterozoic Gaoyuzhuang Formation Manganese Ore in Qinjiayu, East Hebei: Constraints from Mineralogical and Geochemical Evidences. Earth Science, 47(1): 277-289 (in Chinese with English abstract).
|
Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-x
|
Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73: 27-49. https://doi.org/10.1016/0301-9268(94)00070-8
|
Lei, C., Yin, S. Y., Ye, J. R., et al., 2021. Characteristics and Deposition Models of the Paleocene Source Rocks in the Lishui Sag, East China Sea Shelf Basin: Evidences from Organic and Inorganic Geochemistry. Journal of Petroleum Science and Engineering, 200: 108342. https://doi.org/10.1016/j.petrol.2021.108342
|
Lei, C., Yin, S. Y., Ye, J. R., et al., 2021. Geochemical Characteristics and Hydrocarbon Generation History of Paleocene Source Rocks in Jiaojiang Sag, East China Sea Basin. Earth Science, 46(10): 3575-3587 (in Chinese with English abstract).
|
Li, H., Lu, J. L., Li, R. L., et al., 2017. Generation Paleoenvironment and Its Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in Changling Depression, South Songliao Basin. Earth Science, 42(10): 1774-1786 (in Chinese with English abstract).
|
Li, M. L., Chen, L., Tian, J. C., et al., 2019. Paleoclimate and Paleo-Oxygen Evolution during the Gucheng Period-Early Nantuo Period of Nanhua System in the Zouma Area, West Hubei: Evidence from Elemental Geochemistry of Fine Clastic Rocks. Acta Geologica Sinica, 93(9): 2158-2170 (in Chinese with English abstract).
|
Li, Y., Zhang, J. L., Liu, Y., et al., 2019. Organic Geochemistry, Distribution and Hydrocarbon Potential of Source Rocks in the Paleocene, Lishui Sag, East China Sea Shelf Basin. Marine and Petroleum Geology, 107: 382-396. https://doi.org/10.1016/j.marpetgeo.2019.05.025
|
Li, Y. H., Xu, X. Y., Zhang, J. F., et al., 2022. Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation (K1sh Fm.), Lishu Faulted Depression, South Songliao Basin. Earth Science, 47(5): 1728-1747 (in Chinese with English abstract).
|
Liu, Z. H., Hou, Y. L., Chen, S. H., et al., 2022. Early Cenozoic Sedimentary Characteristics and Provenance Evolution of Lishui Depression, East China Sea. Earth Science, 47(7): 2562-2572 (in Chinese with English abstract).
|
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0
|
Shen, W. L., Qi, B. W., 2020. Definition and Distribution Prediction of Effective Source Rocks in Lishui Sag, East China Sea Basin. Bulletin of Geological Science and Technology, 39(3): 77-88 (in Chinese with English abstract).
|
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Journal of Geology, 94(4): 632-633.
|
Tian, Y., Ye, J. R., Lei, C., et al., 2016. Development Controlling Factors and Forming Model for Source Rock of Yueguifeng Formation in Lishui-Jiaojiang Sag, the East China Sea Continental Shelf Basin. Earth Science, 41(9): 1561-1571 (in Chinese with English abstract).
|
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
|
Wang, P. W., Zou, C., Li, X. J., et al., 2021. Geochemical Characteristics of Element Qiongzhusi Group in Dianqianbei Area and Paleoenvironmental Significance. Journal of China University of Petroleum (Edition of Natural Science), 45(2): 51-62 (in Chinese with English abstract).
|
Xu, X. T., Shao, L. Y., 2018. Limiting Factors in Utilization of Chemical Index of Alteration of Mudstones to Quantify the Degree of Weathering in Provenance. Journal of Palaeogeography (Chinese Edition), 20(3): 515-522 (in Chinese with English abstract).
|
Yu, Z. K., Zhao, H., Diao, H., et al., 2020. Thermal Evolution Modeling and Present Geothermal Field of the Lishui Sag of East China Sea Basin. Marine Geology & Quaternary Geology, 40(2): 124-134 (in Chinese with English abstract).
|
Zhang, L. L., Shu, Y., Cai, G. F., et al., 2019. Evolution of Eocene-Oligocene Sedimentary Environment in the Eastern Pearl River Mouth Basin and Its Influence on Hydrocarbon Source Conditions. Acta Petrolei Sinica, 40(S1): 153-165 (in Chinese with English abstract).
|
Zhang, N., Wu, Y., Zhang, X., et al., 2021. Geochemical Characteristics and Its Implications of the Third Member of Paleogene Shahejie Formation from the Damintun Sag, Liaohe Depression. Acta Geologica Sinica, 95(2): 517-535 (in Chinese with English abstract).
|
Zhu, W. L., Zhong, K., Fu, X. W., et al., 2019. The Formation and Evolution of the East China Sea Shelf Basin: A New View. Earth-Science Reviews, 190: 89-111. https://doi.org/10.1016/j.earscirev.2018.12.009
|
蔡雄飞, 1994. 古气候是盆地分析不可缺少的因素. 岩相古地理, 14(2): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YXGD402.004.htm
|
崔滔, 焦养泉, 杜远生, 等, 2013. 黔北务正道地区铝土矿形成环境的古盐度识别. 地质科技情报, 32(1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201301012.htm
|
丁修建, 柳广弟, 黄志龙, 等, 2016. 有机质供给和保存在烃源岩形成中的控制作用. 地球科学, 41(5): 832-842. doi: 10.3799/dqkx.2016.070
|
范玉海, 屈红军, 王辉, 等, 2012. 微量元素分析在判别沉积介质环境中的应用: 以鄂尔多斯盆地西部中区晚三叠世为例. 中国地质, 39(2): 382-389. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201906004.htm
|
高阳东, 林鹤鸣, 汪旭东, 等, 2022. 珠江口盆地陆丰凹陷文昌组沉积地球化学特征及古环境意义. 现代地质, 36(1): 118-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202201011.htm
|
葛和平, 陈晓东, 刁慧, 等, 2012. 东海盆地丽水凹陷原油地球化学特征及油源分析. 中国海上油气, 24(4): 8-12, 31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201204003.htm
|
胡俊杰, 马寅生, 王宗秀, 等, 2017. 地球化学记录揭示的柴达木盆地北缘地区中‒晚侏罗世古环境与古气候. 古地理学报, 19(3): 480-490. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201703008.htm
|
姜亮, 李保华, 钟石兰, 等, 2004. 东海陆架盆地台北坳陷月桂峰组生物地层及古环境. 海洋地质与第四纪地质, 24(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200401005.htm
|
靳松, 马鹏飞, 郭华, 等, 2022. 冀东秦家峪中元古界高于庄组锰矿成因: 来自矿物学和地球化学的制约. 地球科学, 47(1): 277-289. doi: 10.3799/dqkx.2021.055
|
雷闯, 殷世艳, 叶加仁, 等, 2021. 东海盆地椒江凹陷古新统烃源岩地球化学特征及生烃历史. 地球科学, 46(10): 3575-3587. doi: 10.3799/dqkx.2020.399
|
李浩, 陆建林, 李瑞磊, 等, 2017. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素. 地球科学, 42(10): 1774-1786. doi: 10.3799/dqkx.2017.539
|
李明龙, 陈林, 田景春, 等, 2019. 鄂西走马地区南华纪古城期‒南沱早期古气候和古氧相演化: 来自细碎屑岩元素地球化学的证据. 地质学报, 93(9): 2158-2170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201909004.htm
|
李耀华, 徐兴友, 张君峰, 等, 2022. 火山活动期断陷湖盆富有机质混积页岩形成条件: 以松辽盆地南部梨树断陷沙河子组富有机质页岩为例. 地球科学, 47(5): 1728-1747. doi: 10.3799/dqkx.2022.015
|
刘正华, 侯元立, 陈淑慧, 等, 2022. 东海丽水凹陷早新生代沉积特征及物源演化. 地球科学, 47(7): 2562-2572. doi: 10.3799/dqkx.2022.244
|
申雯龙, 漆滨汶, 2020. 东海盆地丽水凹陷有效烃源岩判定及分布预测. 地质科技通报, 39(3): 77-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003012.htm
|
田杨, 叶加仁, 雷闯, 等, 2016. 东海陆架盆地丽水‒椒江凹陷月桂峰组烃源岩发育控制因素及形成模式. 地球科学, 41(9): 1561-1571. doi: 10.3799/dqkx.2016.116
|
王鹏万, 邹辰, 李娴静, 等, 2021. 滇黔北地区筇竹寺组元素地球化学特征及古环境意义. 中国石油大学学报(自然科学版), 45(2): 51-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202102007.htm
|
徐小涛, 邵龙义, 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201803014.htm
|
于仲坤, 赵洪, 刁慧, 等, 2020. 东海陆架盆地丽水凹陷热演化模拟及现今地温场特征. 海洋地质与第四纪地质, 40(2): 124-134. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202002013.htm
|
张丽丽, 舒誉, 蔡国富, 等, 2019. 珠江口盆地东部始新世‒渐新世沉积环境演变及对烃源条件的影响. 石油学报, 40(增刊1): 153-165. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1013.htm
|
张妮, 武毅, 张霞, 等, 2021. 辽河坳陷大民屯凹陷古近系沙河街组三段地球化学特征及其地质意义. 地质学报, 95(2): 517-535. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202102016.htm
|