| Citation: | Zhang Yongshuang, Ren Sanshao, Li Jinqiu, Liao Guozhong, 2023. Prone Sliding Geo-Structure and High-Position Initiating Mechanism of Duolasi Landslide in Nu River Tectonic Mélange Belt. Earth Science, 48(12): 4668-4679. doi: 10.3799/dqkx.2023.017 |
|
Bjerga, A., Konopásek, J., Pedersen, R. B., 2015. Talc-Carbonate Alteration of Ultramafic Rocks within the Leka Ophiolite Complex, Central Norway. Lithos, 227: 21-36. https://doi.org/10.1016/j.lithos.2015.03.016
|
|
Callahan, O. A., Eichhubl, P., Olson, J. E., et al., 2019. Fracture Mechanical Properties of Damaged and Hydrothermally Altered Rocks, Dixie Valley-Stillwater Fault Zone, Nevada, USA. Journal of Geophysical Research: Solid Earth, 124(4): 4069-4090. https://doi.org/10.1029/2018jb016708
|
|
Chen, J. P., Li, H. Z., 2016. Genetic Mechanism and Disasters Features of Complicated Structural Rock Mass along the Rapidly Uplift Section at the Upstream of Jinsha River. Journal of Jilin University (Earth Science Edition), 46(4): 1153-1167(in Chinese with English abstract).
|
|
Chen, R. C., Chen, J., Xu, H., et al., 2022. The Morphology and Sedimentology of the Walai Rock Avalanche in Southern China, with Implications for Confined Rock Avalanches. Geomorphology, (413): 108346. https://doi.org/10.1016/j.geomorph.2022.108346
|
|
Deng, J. H., Gao, Y. J., Yao, X., et al., 2021. Recognition and Implication of Basu Giant Rock Avalanche. Advanced Engineering Sciences, 53(3): 19-28(in Chinese with English abstract).
|
|
Geological and Mineral Resources Bureau of Tibet Autonomous Region, 1993. Regional Geological Records of Tibet Autonomous Region. Geological Publishing House, Beijing(in Chinese).
|
|
Han, M. M., Chen, L. C., Li, Y. B., et al., 2022. Geological and Geomorphic Evidence for Late Quaternary Activity of the Bianba-Luolong Fault on the Western Boundary of the Bangong-Nujiang Suture. Earth Science, 47(3): 757-765(in Chinese with English abstract).
|
|
Hungr, O., Evans, S. G., 2004. Entrainment of Debris in Rock Avalanches: An Analysis of a Long Run-out Mechanism. Geological Society of America Bulletin, 116(9): 1240. https://doi.org/10.1130/b25362.1
|
|
Iyer, K., Austrheim, H., John, T., et al., 2008. Serpentinization of the Oceanic Lithosphere and Some Geochemical Consequences: Constraints from the Leka Ophiolite Complex, Norway. Chemical Geology, 249(1-2): 66-90. https://doi.org/10.1016/j.chemgeo.2007.12.005
|
|
Kim, C., Snell, C., Medley, E., 2004. Shear Strength of Franciscan Complex Mélange as Calculated from Back-Analysis of a Landslide. Proceedings: Fifth International Conference on Case Histories in Geotechnical Engineering, New York, NY, April 13-17, 1-8.
|
|
Kohno, M., Maeda, H., 2010. Mechanical Properties of Hydrothermally Altered Rocks from Northeastern Hokkaido, Japan, Based on Point Load Strength Test Results. Journal of MMIJ, 127(1): 14-19. https://doi.org/10.2473/journalofmmij.127.14
|
|
Lan, H. X., Zhang, Y. X., Macciotta, R., et al., 2022. The Role of Discontinuities in the Susceptibility, Development, and Runout of Rock Avalanches: A Review. Landslides, 19(6): 1391-1404. https://doi.org/10.1007/s10346-022-01868-w
|
|
Meller, C., Kontny, A., Kohl, T., 2014. Identification and Characterization of Hydrothermally Altered Zones in Granite by Combining Synthetic Clay Content Logs with Magnetic Mineralogical Investigations of Drilled Rock Cuttings. Geophysical Journal International, 199(1): 465-479. https://doi.org/10.1093/gji/ggu278
|
|
Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304(in Chinese with English abstract).
|
|
Shuzui, H. R., 2001. Process of Slip-Surface Development and Formation of Slip-Surface Clay in Landslides in Tertiary Volcanic Rocks, Japan. Engineering Geology, 61(4): 199-220. https://doi.org/10.1016/s0013-7952(01)00025-4
|
|
Strom, A., 1994. Mechanism of Stratification and Abnormal Crushing of Rockslide Deposits. Proceeding of 7th Intemational IAEG Congress 3. Rotterdam, Balkema, 1287-1295.
|
|
Tang, Y., Qin, Y. D., Gong, X. D., et al., 2022. Determination of Material Composition of Jinshajiang Tectonic Mélange Belt in Gonjo-Baiyu Area, Eastern Tibet. Sedimentary Geology and Tethyan Geology, 42(2): 260-278(in Chinese with English abstract).
|
|
Wang, L. Y., Yang, Z. J., Liu, G., et al., 2021. Dynamic Processes of the Dora Kamiyama Rockslide in the Tibetan Plateau, China: Geomorphic Implication. Bulletin of Engineering Geology and the Environment, 80(2): 933-950. https://doi.org/10.1007/s10064-020-02004-5
|
|
Wang, Y. F., Cheng, Q. G., Zhu, Q., 2012. Inverse Grading Analysis of Deposit from Rock Avalanches Triggered by Wenchuan Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31(6): 1089-1106(in Chinese with English abstract).
|
|
Wen, B. P., Zeng, Q. Q., Yan, T. X., et al., 2020. Preliminary Analysis on Initial Failure Modes of Large Rock Avalanches'Source Slopes in the Southeastern Qinghai-Tibet Plateau. Advanced Engineering Sciences, (5): 38-49(in Chinese with English abstract).
|
|
Wu, C. H., Cui, P., Li, Y. S., et al., 2021. Tectonic Damage of Crustal Rock Mass around Active Faults and Its Conceptual Model at Eastern Margin of Tibetan Plateau. Journal of Engineering Geology, 29(2): 289-306(in Chinese with English abstract).
|
|
Yang, C. L., Wang, S. L., Wang, Q. Q., et al., 2019. Analysis of Rock Alteration Characteristics in Dam Site Area of a Hydropower Station in Tibet. Journal of Water Resources and Architectural Engineering, 17(6): 93-98(in Chinese with English abstract).
|
|
Yang, G. L., Huang, R. Q., Wang, J. Z., et al., 2006. Study on the Pore Characteristics and the Weakness of Altered-Rock for a Project. Journal of Mineralogy and Petrology, 26(4): 111-115(in Chinese with English abstract).
|
|
Yoshida, H., Metcalfe, R., Seida, Y., et al., 2009. Retardation Capacity of Altered Granitic Rock Distributed along Fractured and Faulted Zones in the Orogenic Belt of Japan. Engineering Geology, 106(3-4): 116-122. https://doi.org/10.1016/j.enggeo.2009.03.008
|
|
Zeng, Q. G., Wang, B. D., Xi, L. L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763(in Chinese with English abstract).
|
|
Zhang, M., McSaveney, M. J., 2017. Rock Avalanche Deposits Store Quantitative Evidence on Internal Shear during Runout. Geophysical Research Letters, 44(17): 8814-8821. https://doi.org/10.1002/2017gl073774
|
|
Zhang, Y. S., Li, J. Q., Ren, S. S., et al., 2022. Development Characteristics of Clayey Altered Rocks in the Sichuan-Tibet Traffic Corridor and Their Promotion to Large-Scale Landslides. Earth Science, 47(6): 1945-1956(in Chinese with English abstract).
|
|
陈剑平, 李会中, 2016. 金沙江上游快速隆升河段复杂结构岩体灾变特征与机理. 吉林大学学报(地球科学版), 46(4): 1153-1167.
|
|
邓建辉, 高云建, 姚鑫, 等, 2021. 八宿巨型滑坡的发现及其意义. 工程科学与技术, 53(3): 19-28.
|
|
韩明明, 陈立春, 李彦宝, 等, 2022. 班公湖-怒江缝合带西界边坝-洛隆断裂全新世活动的地质地貌证据. 地球科学, 47(3): 757-765. doi: 10.3799/dqkx.2022.042
|
|
潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070
|
|
唐渊, 秦雅东, 巩小栋, 等, 2022. 藏东贡觉—白玉地区金沙江构造混杂岩带物质组成的厘定. 沉积与特提斯地质, 42(2): 260-278.
|
|
王玉峰, 程谦恭, 朱圻, 2012. 汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析. 岩石力学与工程学报, 31(6): 1089-1106.
|
|
文宝萍, 曾启强, 闫天玺, 等, 2020. 青藏高原东南部大型岩质高速远程崩滑启动地质力学模式初探. 工程科学与技术, 52(5): 38-49.
|
|
伍纯昊, 崔鹏, 李渝生, 等, 2021. 青藏高原东缘活动断裂带地壳岩体构造损伤特征与模式讨论. 工程地质学报, 29(2): 289-306.
|
|
西藏自治区地质矿产局, 1993. 西藏自治区区域地质志. 北京: 地质出版社.
|
|
杨成龙, 王森林, 王钦权, 等, 2019. 西藏某水电站坝址区岩石蚀变特征分析. 水利与建筑工程学报, 17(6): 93-98.
|
|
杨根兰, 黄润秋, 王奖臻, 等, 2006. 某工程蚀变岩孔隙特征及其软弱程度研究. 矿物岩石, 26(4): 111-115.
|
|
曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152
|
|
张永双, 李金秋, 任三绍, 等, 2022. 川藏交通廊道黏土化蚀变岩发育特征及其对大型滑坡的促滑作用. 地球科学, 47(6): 1945-1956. doi: 10.3799/dqkx.2022.155
|