• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 7
    Jul.  2024
    Turn off MathJax
    Article Contents
    He Xurong, Yin Yueping, Zhao Liming, Hu Xiewen, Wang Wenpei, Zhang Shilin, 2024. Disintegration and Fragmentation Effect of High Position Rock Landslide Debris Flow Based on Large Scale Physical Model Test. Earth Science, 49(7): 2650-2661. doi: 10.3799/dqkx.2023.021
    Citation: He Xurong, Yin Yueping, Zhao Liming, Hu Xiewen, Wang Wenpei, Zhang Shilin, 2024. Disintegration and Fragmentation Effect of High Position Rock Landslide Debris Flow Based on Large Scale Physical Model Test. Earth Science, 49(7): 2650-2661. doi: 10.3799/dqkx.2023.021

    Disintegration and Fragmentation Effect of High Position Rock Landslide Debris Flow Based on Large Scale Physical Model Test

    doi: 10.3799/dqkx.2023.021
    • Received Date: 2022-12-06
      Available Online: 2024-08-03
    • Publish Date: 2024-07-25
    • Disintegration and fragmentation effect generally exists in the process of high position rock landslide movement, which can change the material state and motion state of landslide, thus affecting the energy distribution and dynamic transmission characteristics of landslide. By large scale physical model test, this paper deeply studies the slip source block body strength, volume, thickness and joint development degree and slope on the influence of rock disintegration and fragmentation, discusses the disintegration and fragmentation characteristics and the law of detrital energy dissipation of high position rock landslide debris flow, and reveals its momentum transfer mechanism. In the process of dynamic transmission of landslide debris flow, the velocity loss in the front is obviously less than that in the rear, the leading edge has obvious "secondary acceleration", and a large number of fine particles accumulate at the far end. The rear and forward parts of the landslide have obvious velocity and power transfer effect, and the higher the degree of fragmentation, the more significant the dynamic transfer effect. The process of disintegration and fragmentation is accompanied by the transformation, transfer and loss of energy. Under the control of the degree of breakage, the energy dissipation accounts for 3.32%-21.03% of the total potential energy.

       

    • loading
    • Bartali, R., Sarocchi, D., Nahmad-Molinari, Y., 2015. Stick-Slip Motion and High Speed Ejecta in Granular Avalanches Detected through a Multi-Sensors Flume. Engineering Geology, 195: 248-257. https://doi.org/10.1016/j.enggeo.2015.06.019
      Bowman, E. T., Take, W. A., Rait, K. L., et al., 2012. Physical Models of Rock Avalanche Spreading Behaviour with Dynamic Fragmentation. Canadian Geotechnical Journal, 49(4): 460-476. https://doi.org/10.1139/t2012-007
      Bowman, E. T., Take, W. A., 2015. The Runout of Chalk Cliff Collapses in England and France—Case Studies and Physical Model Experiments. Landslides, 12(2): 225-239. https://doi.org/10.1007/s10346-014-0472-2
      Bulmer, M. H., Glaze, L. S., Anderson, S., et al., 2005. Distinguishing between Primary and Secondary Emplacement Events of Blocky Volcanic Deposits Using Rock Size Distributions. Journal of Geophysical Research: Solid Earth, 110(B1): B01201. https://doi.org/10.1029/2003jb002841
      Cagnoli, B., Romano, G. P., 2010. Effect of Grain Size on Mobility of Dry Granular Flows of Angular Rock Fragments: An Experimental Determination. Journal of Volcanology and Geothermal Research, 193(1-2): 18-24. https://doi.org/10.1016/j.jvolgeores.2010.03.003
      Charrière, M., Humair, F., Froese, C., et al., 2016. From the Source Area to the Deposit: Collapse, Fragmentation, and Propagation of the Frank Slide. Geological Society of America Bulletin, 128(1-2): 332-352. https://doi.org/10.1130/B31243.1
      Crosta, G. B., Frattini, P., Fusi, N., 2007. Fragmentation in the Val Pola Rock Avalanche, Italian Alps. Journal of Geophysical Research: Earth Surface, 112(F1): F01006. https://doi.org/10.1029/2005jf000455
      Davies, T. R., McSaveney, M. J., 2009. The Role of Rock Fragmentation in the Motion of Large Landslides. Engineering Geology, 109(1-2): 67-79. https://doi.org/10.1016/j.enggeo.2008.11.004
      Davies, T. R., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long-Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/t99-067
      Evans, S., Mugnozza, G. S., Strom, A., et al., 2006. Landslides from Massive Rock Slope Failure and Associated Phenomena. Landslides, 49: 3-52. https://doi.org/10.1007/978-1-4020-4037-5_1
      Gao, Y., Yin, Y. P., Li, Z., et al., 2022. Study on the Dynamic Disintegration Effect of High Position and Long Runout Rock Landslide. Chinese Journal of Rock Mechanics and Engineering, 41(10): 1958-1970 (in Chinese with English abstract).
      Ge, Y. F., Zhou, T., Huo, S. L., et al., 2019. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche. Earth Science, 44(11): 3939-3949 (in Chinese with English abstract).
      Hao, M. H., Xu, Q., Yang, X. G., et al., 2015. Physical Modeling Tests on Inverse Grading of Particles in High Speed Landslide Debris. Chinese Journal of Rock Mechanics and Engineering, 34(3): 472-479 (in Chinese with English abstract).
      Hardin, B. O., 1985. Crushing of Soil Particles. Journal of Geotechnical Engineering, 111(10): 1177-1192. https://doi.org/10.1061/(asce)0733-9410(1985)111:10(1177)
      Hewitt, K., Clague, J. J., Orwin, J. F., 2008. Legacies of Catastrophic Rock Slope Failures in Mountain Landscapes. Earth-Science Reviews, 87(1-2): 1-38. https://doi.org/10.1016/j.earscirev.2007.10.002
      Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract).
      Hungr, O., Leroueil, S., Picarelli, L., 2014. The Varnes Classification of Landslide Types, an Update. Landslides, 11(2): 167-194. https://doi.org/10.1007/s10346-013-0436-y
      Jiang, J. J., Xu, Q., Zheng, G., et al., 2022. Chute Experimental Study on Effect of Particle Gradation on Movement Speed of Landslide-Debris Flow. Yangtze River, 53(5): 197-203 (in Chinese with English abstract).
      Knapp, S., Krautblatter, M., 2020. Conceptual Framework of Energy Dissipation during Disintegration in Rock Avalanches. Frontiers in Earth Science, 8: 263. https://doi.org/10.3389/feart.2020.00263
      Li, K., Cheng, Q. G., Lin, Q. W., et al., 2022. State of the Art on Rock Avalanche Dynamics from Granular Flow Mechanics. Earth Science, 47(3): 893-912 (in Chinese with English abstract).
      Lin, Q. W., Cheng, Q. G., Li, K., et al., 2020. Contributions of Rock Mass Structure to the Emplacement of Fragmenting Rockfalls and Rockslides: Insights from Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB019296. https://doi.org/10.1029/2019JB019296
      Liu, Y. J., Hu, H. T., Zhao, X. Y., 2004. Experimental Study on Impact Effect of High-Speed Landslide. Rock and Soil Mechanics, 25(2): 255-260 (in Chinese with English abstract).
      Locat, P., Couture, R., Leroueil, S., et al., 2006. Fragmentation Energy in Rock Avalanches. Canadian Geotechnical Journal, 43(8): 830-851. https://doi.org/10.1139/t06-045
      Pollet, N., Schneider, J. L M., 2004. Dynamic Disintegration Processes Accompanying Transport of the Holocene Flims Sturzstrom (Swiss Alps). Earth and Planetary Science Letters, 221(1-4): 433-448. https://doi.org/10.1016/s0012-821x(04)00071-8
      Valentino, R., Barla, G., Montrasio, L., 2008. Experimental Analysis and Micromechanical Modelling of Dry Granular Flow and Impacts in Laboratory Flume Tests. Rock Mechanics and Rock Engineering, 41(1): 153-177. https://doi.org/10.1007/s00603-006-0126-3
      Wang, Y. F., Cheng, Q. G., Zhu, Q., 2015. Surface Microscopic Examination of Quartz Grains from Rock Avalanche Basal Facies. Canadian Geotechnical Journal, 52(2): 167-181. https://doi.org/10.1139/cgj-2013-0284
      Wang, Y. F., Xu, Q., Cheng, Q. G., et al., 2016. Experimental Study on the Propagation and Deposit Features of Rock Avalanche along 3D Complex Topography. Chinese Journal of Rock Mechanics and Engineering, 35(9): 1776-1791 (in Chinese with English abstract).
      Xu, Q., Li, W. L., Dong, X. J., et al., 2017. The Xinmocun Landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and Failure Mechanism. Chinese Journal of Rock Mechanics and Engineering, 36(11): 2612-2628 (in Chinese with English abstract).
      Yang, Q. Q., Zheng, X. Y., Su, Z. M., et al., 2022. Review on Rock-Ice Avalanches. Earth Science, 47(3): 935-949 (in Chinese with English abstract).
      Yin, Y. P., 2000. General Situation of Huge Landslide in Bomiyigong Expressway in Tibet. The Chinese Journal of Geological Hazard and Control, 11(2): 103 (in Chinese with English abstract).
      Yin, Y. P., Wang, W. P., 2020. A Dynamic Erosion Plowing Model of Long Run-Out Landslides Initialized at High Locations. Chinese Journal of Rock Mechanics and Engineering, 39(8): 1513-1521 (in Chinese with English abstract).
      Yin, Y. P., Wang, W. P., Zhang, N., et al., 2017. Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in a Strong Earthquake Area: A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province. Geology in China, 44(5): 827-841 (in Chinese with English abstract).
      Zhang, M., McSaveney, M. J., 2017. Rock Avalanche Deposits Store Quantitative Evidence on Internal Shear during Runout. Geophysical Research Letters, 44(17): 8814-8821. https://doi.org/10.1002/2017gl073774
      Zhang, S. L., Yin, Y. P., Li, H. B., et al., 2022. Transport Process and Mechanism of the Hongshiyan Rock Avalanche Triggered by the 2014 Ludian Earthquake, China. Landslides, 19(8): 1987-2004. https://doi.org/10.1007/s10346-022-01878-8
      Zhang, T., Yang, Z. H., Zhang, Y. S., et al., 2019. An Analysis of the Entrainment of the Xinmo High-Position Landslide in Maoxian County, Sichuan. Hydrogeology & Engineering Geology, 46(3): 138-145 (in Chinese with English abstract).
      Zhao, T., Crosta, G. B., Dattola, G., et al., 2018. Dynamic Fragmentation of Jointed Rock Blocks during Rockslide-Avalanches: Insights from Discrete Element Analyses. Journal of Geophysical Research: Solid Earth, 123(4): 3250-3269. https://doi.org/10.1002/2017JB015210
      Zhou, J. W., Cui, P., Fang, H., 2013. Dynamic Process Analysis for the Formation of Yangjiagou Landslide-Dammed Lake Triggered by the Wenchuan Earthquake, China. Landslides, 10(3): 331-342. https://doi.org/10.1007/s10346-013-0387-3
      高杨, 殷跃平, 李壮, 等, 2022. 高位远程岩质滑坡动力解体效应研究. 岩石力学与工程学报, 41(10): 1958-1970. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202210002.htm
      葛云峰, 周婷, 霍少磊, 等, 2019. 高速远程滑坡运动堆积过程中的能量传递机制. 地球科学, 44(11): 3939-3949. doi: 10.3799/dqkx.2017.589
      郝明辉, 许强, 杨兴国, 等, 2015. 高速滑坡‒碎屑流颗粒反序试验及其成因机制探讨. 岩石力学与工程学报, 34(3): 472-479. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201503005.htm
      黄润秋, 2007.20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
      蒋金晶, 许强, 郑光, 等, 2022. 颗粒级配对碎屑流运动速度影响的滑槽试验研究. 人民长江, 53(5): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202205031.htm
      李坤, 程谦恭, 林棋文, 等, 2022. 高速远程滑坡颗粒流研究进展. 地球科学, 47(3): 893-912. doi: 10.3799/dqkx.2021.169
      刘涌江, 胡厚田, 赵晓彦, 2004. 高速滑坡岩体碰撞效应的试验研究. 岩土力学, 25(2): 255-260. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200402021.htm
      王玉峰, 许强, 程谦恭, 等, 2016. 复杂三维地形条件下滑坡‒碎屑流运动与堆积特征物理模拟实验研究. 岩石力学与工程学报, 35(9): 1776-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609007.htm
      许强, 李为乐, 董秀军, 等, 2017. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究. 岩石力学与工程学报, 36(11): 2612-2628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
      杨情情, 郑欣玉, 苏志满, 等, 2022. 高速远程冰‒岩碎屑流研究进展. 地球科学, 47(3): 935-949. doi: 10.3799/dqkx.2021.158
      殷跃平, 2000. 西藏波密易贡高速巨型滑坡概况. 中国地质灾害与防治学报, 11(2): 103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200002023.htm
      殷跃平, 王文沛, 2020. 高位远程滑坡动力侵蚀犁切计算模型研究. 岩石力学与工程学报, 39(8): 1513-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008001.htm
      殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例. 中国地质, 44(5): 827-841. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705002.htm
      张涛, 杨志华, 张永双, 等, 2019. 四川茂县新磨村高位滑坡铲刮作用分析. 水文地质工程地质, 46(3): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201903019.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(2)

      Article views (524) PDF downloads(55) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return