• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 48 Issue 5
    May  2023
    Turn off MathJax
    Article Contents
    Wu Luyuan, Li Jianhui, Ma Dan, Wang Zifa, Zhang Jianwei, Yuan Chao, Feng Yi, Li Hui, 2023. Prediction for Rock Compressive Strength Based on Ensemble Learning and Bayesian Optimization. Earth Science, 48(5): 1686-1695. doi: 10.3799/dqkx.2023.029
    Citation: Wu Luyuan, Li Jianhui, Ma Dan, Wang Zifa, Zhang Jianwei, Yuan Chao, Feng Yi, Li Hui, 2023. Prediction for Rock Compressive Strength Based on Ensemble Learning and Bayesian Optimization. Earth Science, 48(5): 1686-1695. doi: 10.3799/dqkx.2023.029

    Prediction for Rock Compressive Strength Based on Ensemble Learning and Bayesian Optimization

    doi: 10.3799/dqkx.2023.029
    • Received Date: 2022-09-22
      Available Online: 2023-06-06
    • Publish Date: 2023-05-25
    • Rock compressive strength is an important mechanical parameter to evaluate the stability of rock mass engineering. The traditional statistical regression method has some limitations on the prediction of rock compressive strength. To this end, in this paper it proposes a method for intelligent prediction of rock compressive strength using simple rock mechanics parameters. Firstly, 620 sets of triaxial test data containing different types of rocks were collected and preprocessed. Then, three main stream ensemble learning algorithms, Random forest, XGBoost and LightGBM, were used to establish a rock compressive strength prediction model, and Bayesian optimization algorithm was used to optimize the hyperparameters during model training. Finally, the coefficient of determination (R2), mean absolute percentage error (MAPE) and root mean square error (RMSE) were used to evaluate and compare the generalization ability of the optimized model. In addition, the importance of input features was analyzed by LGB model, to evaluate the importance of input features on the generalization ability of the model. The results show that the three models have achieved good prediction results for rock compressive strength. And the generalization ability of the LGB model is slightly better than that of the other two models (R2 = 0.978, RMSE=5.58, MAPE=9.70%), and the running time is relatively minimum. Elastic modulus (E), confining pressure (σ3) and density (ρ) have great influence on generalization ability of model, while Poisson's ratio(v)has little influence. The prediction model has good applicability to rock strength prediction, and provides a new idea for the combination of machine learning and geotechnical engineering.

       

    • loading
    • Aladejare, A. E., 2020. Evaluation of Empirical Estimation of Uniaxial Compressive Strength of Rock Using Measurements from Index and Physical Tests. Journal of Rock Mechanics and Geotechnical Engineering, 12(2): 256-268. https://doi.org/10.1016/j.jrmge.2019.08.001
      Arjmandpour, J., Hosseinitoudeshki, V., 2013. Estimation of Tensile Strength of Limestone from Some of Its Physical Properties via Simple Regression. Journal of Novel Applied Sciences, 2: 1041-1044.
      Bieniawski, Z. T., 1974. Estimating the Strength of Rock Materials. Journal of the South African Institute of Mining and Metallurgy, 74(8): 312-320. http://saimm.org.za/Journal/v074n08p312.pdf
      Breiman, L., 2001. Random Forests. Machine Learning, 45: 5-32. doi: 10.1023/A:1010933404324
      Cargill, J. S., Shakoor, A., 1990. Evaluation of Empirical Methods for Measuring the Uniaxial Compressive Strength of Rock. International Journal of Rock Mechanics and Mining Sciences, 27(6): 495-503. doi:https://doi.org/ 10.1016/0148-9062(90)91001-N
      Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, 785-794. https://doi.org/10.1145/2939672.2939785
      Çobanoğlu, İ., Çelik, S. B., 2008. Estimation of Uniaxial Compressive Strength from Point Load Strength, Schmidt Hardness and P-Wave Velocity. Bulletin of Engineering Geology and the Environment, 67: 491-498. doi: 10.1007/s10064-008-0158-x
      Cui, J. X., Yang, B., 2018. Survey on Bayesian Optimization Methodology and Applications. Journal of Software, 29(10): 3068-3090 (in Chinese with English abstract). http://www.researchgate.net/publication/330103291_Survey_on_Bayesian_Optimization_Methodology_and_Applications
      Culshaw, M. G., 2015. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007‒2014. Bulletin of Engineering Geology and the Environment, 74: 1499-1500. https://doi.org/10.1007/978-3-319-007713-0
      Edelbro, C., 2003. Rock Mass Strength: A Review. Department of Civil Engineering Division of Rock Mechanics, Beijing.
      Gokceoglu, C., 2002. A Fuzzy Triangular Chart to Predict the Uniaxial Compressive Strength of the Ankara Agglomerates from Their Petrographic Composition. Engineering Geology, 66: 39-51. https://doi.org/10.1016/S0013-7952(02)00023-6
      Goudie, A. S., 2006. The Schmidt Hammer in Geomorphological Research. Progress in Physical Geography, 30: 703-718. doi:https://doi.org/ 10.1177/0309133306071954
      Grima, M. A., Babuška, R., 1999. Fuzzy Model for the Prediction of Unconfined Compressive Strength of Rock Samples. International Journal of Rock Mechanics and Mining Sciences, 36: 339-349. doi:https://doi.org/ 10.1016/S0148-9062(99)00007-8
      Guo, Z. Z., Yin, K. L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312 (in Chinese with English abstract). http://www.researchgate.net/publication/324390254_Evaluation_of_Landslide_Susceptibility_Based_on_GIS_and_WOE-BP_Model
      He, M., 2019. Deep Convolutional Neural Network for Fast Determination of the Rock Strength Parameters Using Drilling Data. International Journal of Rock Mechanics and Mining Sciences, 123: 104084. https://doi.org/10.1016/j.ijrmms.2019.104084
      Huang, F. M., Cao, Y., Fan, X. M., et al., 2021. Effects of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S02): 3227-3240 (in Chinese with English abstract).
      Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
      Huang, X. H., Li, Z. H., Deng, T., et al., 2022. Uranium Potential Evaluation of the Zhuguangshan Granitic Pluton in South China Based on Machine Learning. Earth Science, 1-23 (in Chinese with English abstract).
      Jahed Armaghani, D., 2016. Application of Several Non- Linear Prediction Tools for Estimating Uniaxial Compressive Strength of Granitic Rocks and Comparison of Their Performances. Engineering with Computers, 32: 189-206. doi: 10.1007/s00366-015-0410-5
      Ke, G., 2017. Light GBM: A Highly Efficient Gradient Boosting Decision Tree. Advances in Neural Information Processing Systems, New Orleans, 30.
      Li, S., Chen, J., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327-347. https://doi.org/10.1007/s12583-020-1365-z
      Li, W., Tan, Z. Y., 2016. Comparison on Rock Strength Prediction Models Based on MLR and LS-SVM. Mining Research and Development, 36(11): 36-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYYK201611008.htm
      Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0341816221001090
      Li, Y. R., Zhang, Y. L., Wang, J. C., 2022. Survey on Bayesian Optimization Methods for Hyper-Parameter Tuning. Computer Science, 49(S01): 86-92 (in Chinese with English abstract).
      Mahmoodzadeh, A., 2022. Machine Learning Techniques to Predict Rock Strength Parameters. Rock Mechanics and Rock Engineering, 55: 1721-1741. doi: 10.1007/s00603-021-02747-x
      Miah, M. I., 2020. Machine Learning Approach to Model Rock Strength: Prediction and Variable Selection with Aid of Log Data. Rock Mechanics and Rock Engineering, 53: 4691-4715. doi: 10.1007/s00603-020-02184-2
      Mohamad, E. T., 2018. Rock Strength Estimation: A PSO-Based BP Approach. Neural Computing and Applications, 30: 1635-1646. doi: 10.1007/s00521-016-2728-3
      Sagi, O., Rokach, L., 2018. Ensemble Learning: A Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8: e1249. https://doi.org/10.1002/widm.1249
      Sarkar, K., 2010. Estimation of Strength Parameters of Rock Using Artificial Neural Networks. Bulletin of Engineering Geology and the Environment, 69: 599-606. doi: 10.1007/s10064-010-0301-3
      Singh, T., 2012. Correlation between Point Load Index and Uniaxial Compressive Strength for Different Rock Types. Rock Mechanics and Rock Engineering, 45: 259-264. doi: 10.1007/s00603-011-0192-z
      Tang, Z. L., Xu, Q. J., 2020. Rockburst Prediction Based on Nine Machine Learning Algorithms. Chinese Journal of Rock Mechanics and Engineering, 39(4): 773-781 (in Chinese with English abstract).
      Wang, M., Wan, W., 2019. A New Empirical Formula for Evaluating Uniaxial Compressive Strength Using the Schmidt Hammer Test. International Journal of Rock Mechanics and Mining Sciences, 123: 104094. https://doi.org/10.1016/j.ijrmms.2019.104094
      Wang, R., 2020. Application of Ultrasonic-Rebound Method in Fast Prediction of Rock Strength. Geotechnical and Geological Engineering, 38: 5915-5924. doi: 10.1007/s10706-020-01402-6
      Yang, K., Yuan, L., Qi, L. G., et al., 2013. Establishing Predictive Model for Rock Uniaxial Compressive Strength of No. 11-2 Coal Seam Roof in Huainan Mining Area. Chinese Journal of Rock Mechanics and Engineering, 32(10): 1991-1998 (in Chinese with English abstract). http://www.researchgate.net/publication/287704654_Establishing_predictive_model_for_rock_uniaxial_compressive_strength_of_No11-2coal_seam_roof_in_Huainan_mining_area
      Zhang, C. L., Zhang, C. P., Xu, J., 2015. Comparison Test of Rock Point Load Strength and Uniaxial Compressive Strength. Chinese Journal of Underground Space and Engineering, 11(S2): 447-451 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-BASE2015S2014.htm
      Zhang, W. G., He, Y. W., Wang, L. Q., et al., 2023. Machine Learning Solution for Landslide Susceptibility Based on Hydrographic Division: Case Study of Fengjie County in Chongqing. Earth Science, 48(5): 2024-2038 (in Chinese with English abstract).
      Zhang, W. G., Li, H. R., Wu, C. Z., et al., 2021a. Stability Assessment of Underground Entry-Type Excavations Using Data-Driven RF and KNN Methods. Journal of Hunan University (Natural Sciences), 48(3): 164-172 (in Chinese with English abstract).
      Zhang, W. G., Tang, L. B., Chen, F. Y., et al., 2021b. Prediction for TBM Penetration Rate Using Four Hyperparameter Optimization Methods and Random Forest Model. Journal of Basic Science and Engineering, 29(5): 1186-1200 (in Chinese with English abstract). doi: 10.1007/978-981-16-6835-7_8
      Zhou, Z. H., 2016. Machine Learning. Tsinghua University Press, Beijing, 173(in Chinese).
      Zhou, Z. H., 2021. Ensemble Learning, Machine Learning. Springer, Berlin, 181-210.
      崔佳旭, 杨博, 2018. 贝叶斯优化方法和应用综述. 软件学报, 29(10): 3068-3090. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201810011.htm
      郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. doi: 10.3799/dqkx.2018.555
      黄发明, 曹昱, 范宣梅, 等, 2021. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报, 40(S02): 3227-3240. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2023.htm
      黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305003.htm
      黄鑫怀, 李增华, 邓腾, 等, 2022. 基于机器学习的华南诸广山花岗岩体铀矿潜力评价. 地球科学, 1-23.
      李文, 谭卓英, 2016. 基于MLR与LS-SVM的岩石强度预测模型比较. 矿业研究与开发, 36(11): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201611008.htm
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      李亚茹, 张宇来, 王佳晨, 2022. 面向超参数估计的贝叶斯优化方法综述. 计算机科学, 49(S01): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2022S1013.htm
      汤志立, 徐千军, 2020. 基于9种机器学习算法的岩爆预测研究. 岩石力学与工程学报, 39(4): 773-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004011.htm
      杨科, 袁亮, 祁连光, 等, 2013. 淮南矿区11-2煤顶板岩石单轴抗压强度预测模型构建. 岩石力学与工程学报, 32(10): 1991-1998. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310005.htm
      张春玲, 张传鹏, 徐静, 2015. 岩石点荷载强度与单轴抗压强度的对比试验. 地下空间与工程学报, 11(S2): 447-451. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2015S2014.htm
      仉文岗, 何昱苇, 王鲁琦, 等, 2023. 基于水系分区的滑坡易发性机器学习分析方法——以重庆市奉节县为例. 地球科学: 48(5): 2024-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202305028.htm
      仉文岗, 李红蕊, 巫崇智, 等, 2021a. 基于RF和KNN的地下采场开挖稳定性评估. 湖南大学学报(自然科学版), 48(3): 164-172. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202103017.htm
      仉文岗, 唐理斌, 陈福勇, 等, 2021b. 基于4种超参数优化算法及随机森林模型预测TBM掘进速度. 应用基础与工程科学学报, 29(5): 1186-1200. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202105009.htm
      周志华, 2016. 机器学习. 北京: 清华大学出版社, 173.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(2)

      Article views (1809) PDF downloads(160) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return