• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Li Yongwei, Xu Linrogn, Shang Yonghui, Chen Shuyang, 2024. Debris Flow Hazard Evaluation under the Influence of Retaining Dam. Earth Science, 49(8): 2839-2850. doi: 10.3799/dqkx.2023.035
    Citation: Li Yongwei, Xu Linrogn, Shang Yonghui, Chen Shuyang, 2024. Debris Flow Hazard Evaluation under the Influence of Retaining Dam. Earth Science, 49(8): 2839-2850. doi: 10.3799/dqkx.2023.035

    Debris Flow Hazard Evaluation under the Influence of Retaining Dam

    doi: 10.3799/dqkx.2023.035
    • Received Date: 2022-04-04
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • The debris flow hazard was more serious with the increase of occurrence probability of low-frequency debris flow after the earthquake. Resulting in the damage of retaining dam and reduction of its capabilities in disaster prevention and reduction. But few studies payed attention to the influence of retaining dam on debris flow hazard. Moreover, disaster-pregnant factors were usually used as the index of debris flow hazard, but the result of hazard evaluation could not completely reflect the destructive power and intensity of debris flow. Thus, the dynamic parameters of debris flow and the stability coefficient of retaining dam in different return periods were calculated in Chutou gully. And the debris flow hazard was evaluated based on dynamic parameters of debris flow and improved entropy method. And the control relationship between retaining dam and debris flow hazard was analyzed. The study findings were as follows: Reasonable evaluation results could be obtained by dynamic parameters and improved entropy method. The values of debris flow hazard were decreased about 12.27%~43.75% with different return periods (1%, 2%, 5% and 10%) under the influence of the retaining dam, due to the discharge of debris flow was decreased below the retaining dam. This work may provide some new clues for prevention and control of debris flow and optimum design of retaining dam.

       

    • loading
    • Chen, F. F., Yao, L. H., Zhao, H. L., et al., 2018. Discussion on the Risk Assessment of Debris Flow. Science Technology and Engineering, 18(32): 114-123 (in Chinese with English abstract).
      Gu, F. Y., Xu, L. R., Li, Y. W., 2022. Evaluation of Vulnerability of Diversion Dike Suffering from Debris Flow Disasters. Journal of Civil and Environmental Engineering, 45(1): 145-154 (in Chinese with English abstract).
      Guo, X. G., 1998. Application of Improved Entropy Method in Evaluation of Economic Result. System Engineering Theory and Practice, (12): 99-103(in Chinese with English abstract).
      Hou, L. G., Cui, P., 2004. The Study on Assessment of Debris Flow Hazards in the Solo Channel. Research of Soil and Water Conservation, (2): 125-128 (in Chinese with English abstract).
      Huang, Q. L., Chen, W., Fu, X. D., 2018. AHP-RBF Assessment Model of Regional Debris Flow Hazard Supported by Unit Slope. Journal of Zhejiang University(Engineering Science), 52(9): 1667-1675 (in Chinese with English abstract).
      Jiang, Z. X., 2015. The Concise Engineering Design for Geo-Hazard Mitigation after Earthquke. Southwest Jiaotong University Press, Chengdu (in Chinese).
      Li, X. L., Song, G. H., Xiang, L. Z., 2021. Hazard Analysis of Debris Flows Based on Different Evaluation Unit Sand Disaster Entropy: A Case Study in Wudu Section of the Bailong River Basin. The Chinese Journal of Geological Hazard and Control, 32(6): 107-115 (in Chinese with English abstract).
      Li, Y. W., Xu, L. R., Gu, F. Y., 2022. Influence of Disaster-Pregnant Factors on Debris Flow Hazard. Earth Science, 1-12 (in Chinese with English abstract).
      Liang, W., Zhuang, D., Jiang, D., et al., 2012. Assessment of Debris Flow Hazards Using a Bayesian Network. Geomorphology, 171: 94-100. https://doi.org/10.1016/j.geomorph.2012.05.008
      Liu, X. L., Tang, C., 1995. Debris Flow Hazard Assessment. Science Press, Beijing (in Chinese).
      Liu, B., Hu, X., Ma, G., et al., 2021. Back Calculation and Hazard Prediction of a Debris Flow in Wenchuan Meizoseismal Area, China. Bulletin of Engineering Geology and the Environment. 80: 3457-3474. https://doi.org/10.1007/s10064-021-02127-3
      Liu, F. Z., Cui, C., Wang, J. C., 2020. Hazard Assessment of Debris Flow Based on the Certainty Factor Rate and the Logistic Regression Model. Journal of Safety and Environment, (4): 79-84(in Chinese with English abstract).
      Lu, Y., Xu, L. R., 2014. Chen Shuyang, et al. Combined Weight Method Based on Game Theory for Debris Flow Hazard Risk Assessment. Journal of Catastrophology, 29(1): 194-200 (in Chinese with English abstract).
      Luo, G., Cheng, Q. G., Shen, W. G., et al., 2022. Research Status and Development Trend of the High-Altitude Extremely-Energetic Rockfalls. Earth Science, 47(3): 913-934 (in Chinese with English abstract).
      Qian, X., Chen, J. P., Xiang, L. J., et al., 2016. A Novel Hybrid KPCA and SVM with PSO Model for Identifying Debris Flow Hazard Degree: a Case Study in Southwest China. Environmental Earth Sciences, 75(11): 1-16 https://doi.org/10.1007/s12665-016-5774-3
      Shen, S., Liao, W., Nie, L., et al. 2018. Debris Flow Hazard Assessment at Dongmatun Village in Laomao Mountainous Area of Dalian, Northeast China. Arabian Journal of Geosciences, 11: 1-12. https://doi.org/10.1007/s12517-018-3953-0
      Sichuan Provincial Department of Water Resources. 1984. Handbook of Calculation for Rainstorm and Flood in Small and Medium-Sized Watersheds in Sichuan Province. Sichuan Provincial Department of Water Resources, Chengdu(in Chinese).
      Song, G. H., Zhang, J., Yang, Z. X., 2022. Effectiveness Evaluation and Problems Analysis of Debris Flow Control Project after Earthquake. Joumal of Catastrophology, 37(1): 58-67 (in Chinese with English abstract).
      Tang, C., Huang, R. Q., Huang, D., et al., 2006. Impacts of Debris Flows on the Reservoir of a Hydropower Station in the Meigu River of Jinshajiang. Joumal of Engineering Geology, (2): 145-151(in Chinese with English abstract).
      Tang, C., Zhu, J., L, i W., et al., 2009. Rainfall-Triggered Debris Flows Following the Wenchuan Earthquake. Bulletin of Engineering Geology and the Environment, 68(2). https://doi.org/10.1007/s10064-009-0201-6
      Tang, C., Li, W. L., Ding, J., et al., 2011. Field Investigation and Research on Giant Debris Flow on August 14, 2010 in Yingxiu Town, Epicenter of Wenchuan Earthquake. Earth Science, 36(1): 172-180 (in Chinese with English abstract).
      Tian, S. J., Zhang, J., Zhang, S. S., 2020. Effectiveness Evaluation of Disaster Reduction for Debris Flows Control Engineering after Wenchuan Earthquake. Joural of Catastrophology, 35(3): 102-109 (in Chinese with English abstract).
      Tian, S., Hu, G., Chen, N., et al., 2022. Extreme Climate and Tectonic Controls on the Generation of a Large-Scale, Low-Frequency Debris Flow. Catena, 212: 106086. https://doi.org/10.1016/j.catena.2022.106086
      Tie, Y. B., Tang, C., 2006. Application of AHP in Single Debris Flow Risk Assessment. The Chinese Journal of Geological Hazard and Control, (4): 79-84 (in Chinese with English abstract).
      Wang, B. Y., Yang, H. S., Yang, Z. Y., 2016. Calculation of Dynamic Characteristic Parameters of Debris Flow at Different Frequency in Zili Gull. Journal of Geological Hazards and Environment Preservation, 2016, 27(4): 26-30 (in Chinese with English abstract).
      Wang X, Liu C, Chen S, et al. 2020. Impact of Coal Sector's De-Capacity Policy on Coal Price. Applied Energy, 2020, 265: 114802. https://doi.org/10.1016/j.apenergy.2020.114802
      Yuan, L., Zhang, Q., Li, W., et al., 2006. Debris Flow Hazard Assessment Based on Support Vector Machine. 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 4221-4224. https://doi.org/10.1109/IGARSS.2006.1083
      Zhang, Y. Y., Zhong, L., Fan, X. Y., et al., 2021. The Disaster Model of Debns Fows after Earhquake at Chutou Gully of Minjiang River Valley, China. Mountain Research, 2021, 39(5): 756-766 (in Chinese with English abstract).
      Zhang, S. H., Wu, G., 2019. Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS. Earth Science, 44(9): 3115-3134 (in Chinese with English abstract).
      Zhang, X., Wu, Y., Zhai, E., et al. 2021. Coupling Analysis of the Heat-Water Dynamics and Frozen Depth in a Seasonally Frozen Zone. Journal of Hydrology, 593: 125603. https://doi.org/10.1016/j.jhydrol.2020.125603
      Zheng, G. G., 2020. Implementing and Deepening the Understanding of President Xi's Keynoter Remarks on Disaster Prevention and Mitigation: A Comprehensive Push for Strengthening Natural Disaster Management in China. The Weekly Standard, (5): 14-16(in Chinese).
      陈飞飞, 姚磊华, 赵宏亮, 等. 2018. 泥石流危险性评价问题的探讨. 科学技术与工程, 18(32): 114-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201832018.htm
      郭显光, 1998. 改进的熵值法及其在经济效益评价中的应用. 系统工程理论与实践, (12): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL812.018.htm
      谷丰宇, 徐林荣, 李永威, 2022. 导流堤遭受泥石流灾害的易损性评价. 土木与环境工程学报(中英文), 45 (1): 145-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202301015.htm
      黄启乐, 陈伟, 傅旭东, 2018. 斜坡单元支持下区域泥石流危险性AHP-RBF评价模型. 浙江大学学报(工学版), 52(9): 1667-1675. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201809006.htm
      侯兰功, 崔鹏, 2004. 单沟泥石流灾害危险性评价研究. 水土保持研究, (2): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200402040.htm
      蒋忠信, 2015. 震后山地地质灾害治理工程设计概要. 成都: 西南交通大学出版社.
      李永威, 徐林荣, 谷丰宇, 2022. 孕灾环境对泥石流危险性影响. 地球科学, 1-12.
      李小龙, 宋国虎, 向灵芝, 等, 2021. 基于不同评价单元和灾害熵的泥石流危险性分析—以白龙江流域武都段为例. 中国地质灾害与防治学报, 32(6): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202106013.htm
      刘希林, 唐川, 1995. 泥石流危险性评价. 北京: 科学出版社.
      刘福臻, 崔超, 王军朝, 等, 2020. 基于CF与LR模型的泥石流危险性评价. 安全与环境学报, 21(4): 1693-1703. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202104040.htm
      罗刚, 程谦恭, 沈位刚, 等, 2022. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133
      路遥, 徐林荣, 陈舒阳, 等, 2014. 基于博弈论组合赋权的泥石流危险度评价. 灾害学, 29(1): 194-200. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201401035.htm
      宋国虎, 张继, 杨桢贤, 2022. 震后泥石流治理工程有效性评价及存在问题分析. 灾害学, 37(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202201011.htm
      四川省水利厅, 1984. 四川省中小流域暴雨洪水计算手册. 成都: 四川省水利厅.
      唐川, 黄润秋, 黄达, 等, 2006. 金沙江美姑河牛牛坝水电站库区泥石流对工程影响分析. 工程地质学报, (2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200602000.htm
      唐川, 李为乐, 丁军, 等, 2011. 汶川震区映秀镇"8·14"特大泥石流灾害调查. 地球科学, 36(1): 172-180. doi: 10.3799/dqkx.2011.018
      铁永波, 唐川, 2006. 层次分析法在单沟泥石流危险度评价中的应用. 中国地质灾害与防治学报, (4): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200604017.htm
      田述军, 张静, 张珊珊, 2020. 震后泥石流防治工程减灾效益评价研究. 灾害学, 35(3): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202003021.htm
      王邦阳, 杨华舒, 杨在月, 2016. 不同爆发频率下的泥石流动力特征参数计算. 地质灾害与环境保护, 2016, 27(4): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201604005.htm
      张友谊, 钟磊, 樊晓一, 等, 2021. 岷江河谷锄头沟震后泥石流致灾模式. 山地学报, 39(5): 756-766. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202105014.htm
      郑国光, 2020. 深入学习贯彻习近平总书记防灾减灾救灾重要论述全面提高我国自然灾害防治能力. 旗帜, (5): 14-16 https://www.cnki.com.cn/Article/CJFDTOTAL-ZIGU202005007.htm
      张书豪, 吴光, 2019. 随机森林与GIS的泥石流易发性及可靠性. 地球科学, 44(9): 3115-3134. doi: 10.3799/dqkx.2019.081
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(4)  / Tables(4)

      Article views (666) PDF downloads(56) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return