• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Yang Ying, Ye Liming, Ni Jianyu, Yu Xiaoguo, Yuan Chao, Ge Qian, Song Sai, Zhang Yongcong, 2024. Arctic Neodymium Isotope Traces for the Atlantic Water Layer at the Chukchi Continental Margin. Earth Science, 49(8): 2938-2951. doi: 10.3799/dqkx.2023.045
    Citation: Yang Ying, Ye Liming, Ni Jianyu, Yu Xiaoguo, Yuan Chao, Ge Qian, Song Sai, Zhang Yongcong, 2024. Arctic Neodymium Isotope Traces for the Atlantic Water Layer at the Chukchi Continental Margin. Earth Science, 49(8): 2938-2951. doi: 10.3799/dqkx.2023.045

    Arctic Neodymium Isotope Traces for the Atlantic Water Layer at the Chukchi Continental Margin

    doi: 10.3799/dqkx.2023.045
    • Received Date: 2023-01-23
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • In the Arctic Ocean, the Atlantic water layer is an essential source of heat that regulates sea ice, ice shelves, and surrounding ice sheets. By analyzing the content and pattern of rare earth elements (REE) and Nd isotopic composition (εNd) in the sediments of Hole M04 and its distribution pattern and Nd isotopic composition of Fe-Mn oxide fraction, this study explores the enrichment mechanism of REE on the edge of Chukchi shelf since Late Pleistocene, the effectiveness of εNd tracer water mass properties, and the strength and weakness of the "Atlantic water layer".The records indicate that Fe-Mn oxides were the primary carriers for dissolved REE during the interglacial period, but a large quantity of dissolved REE was also enriched in the gray layer lacking Fe-Mn oxides. In addition, there is a significant spike of εNd in Fe-Mn oxide leachate during the glacial period and a drop during the interglacial period corresponding to values between -5.50 and -8.74. Therefore, we conclude that the Atlantic water layer strengthened during the interglacial period, which allowed re-oxidation of Fe2+ and Mn2+ input from the shelf, but withdrew almost entirely from the Chukchi continental margin during the glacial period. Similar to the chemical composition of modern glacial meltwater, the development of the East Siberian ice sheet and its subglacial drainage are more likely to lead to the REE enrichment and εNd positive bias in Core M04 Fe-Mn oxide extraction solution than sea ice production brine. These findings further illustrate the process of enrichment of REEs in the Arctic Ocean, demonstrate the effectiveness of εNd as a marker of the Atlantic water layer, and contribute to an understanding of the Atlantic water layer evolution.

       

    • loading
    • Andersson, P. S., Porcelli, D., Frank, M., et al., 2008. Neodymium Isotopes in Seawater from the Barents Sea and Fram Strait Arctic-Atlantic Gateways. Geochimica et Cosmochimica Acta, 72(12): 2854-2867. https://doi.org/10.1016/j.gca.2008.04.008
      Bassis, J. N., Petersen, S. V., Mac Cathles, L., 2017. Heinrich Events Triggered by Ocean Forcing and Modulated by Isostatic Adjustment. Nature, 542(7641): 332-334. https://doi.org/10.1038/nature21069
      Baturin, G. N., Dubinchuk, V. T., 2011. The Composition of Ferromanganese Nodules of the Chukchi and East Siberian Seas. Doklady Earth Sciences, 440(1): 1258-1264. https://doi.org/10.1134/s1028334x11090029
      Blaser, P., Lippold, J., Gutjahr, M., et al., 2016. Extracting Foraminiferal Seawater Nd Isotope Signatures from Bulk Deep Sea Sediment by Chemical Leaching. Chemical Geology, 439: 189-204. https://doi.org/10.1016/j.chemgeo.2016.06.024
      Böhm, E., Lippold, J., Gutjahr, M., et al., 2014. Strong and Deep Atlantic Meridional Overturning Circulation during the last Glacial Cycle. Nature, 517(7532): 73-76. https://doi.org/10.1038/nature14059
      Cronin, T. M., Dwyer, G. S., Farmer, J., et al., 2012. Deep Arctic Ocean Warming during the Last Glacial Cycle. Nature Geoscience, 5(9): 631-634. https://doi.org/10.1038/ngeo1557
      Dahlqvist, R., Pandersson, P. S., Porcelli, D., 2007. Nd Isotopes in Bering Strait and Chukchi Sea Water. Goldschmidt Conference, A196.
      Deng, K., Yang, S. Y., Guo, Y. L., 2022. A Global Temperature Control of Silicate Weathering Intensity. Nature Communications, 13(1): 1781. https://doi.org/10.1038/s41467-022-29415-0
      Dove, D., Polyak, L., Coakley, B., 2014. Widespread, Multi-Source Glacial Erosion on the Chukchi Margin, Arctic Ocean. Quaternary Science Reviews, 92(6): 112-122. https://doi.org/10.1016/j.quascirev.2013.07.016
      Du, J. H., Haley, B. A., Mix, A. C., 2016. Neodymium Isotopes in Authigenic Phases, Bottom Waters and Detrital Sediments in the Gulf of Alaska and their Implications for Paleo-Circulation Reconstruction. Geochimica et Cosmochimica Acta, 193(Part 3): 14-35. https://doi.org/10.1016/j.gca.2016.08.005
      Fagel, N., Not, C., Gueibe, J., et al., 2014. Late Quaternary Evolution of Sediment Provenances in the Central Arctic Ocean: Mineral Assemblage, Trace Element Composition and Nd and Pb Isotope Fingerprints of Detrital Fraction from the Northern Mendeleev Ridge. Quaternary Science Reviews, 92(5322): 140-154. https://doi.org/10.1016/j.quascirev.2013.12.011
      Gordeev, V. V., 2006. Fluvial Sediment Flux to the Arctic Ocean. Geomorphology, 80(1/2): 94-104. https://doi.org/10.1016/j.geomorph.2005.09.008
      Grenier, M., Brown, K. A., Colombo, M., et al., 2021. Controlling Factors and Impacts of River-Borne Neodymium Isotope Signatures and Rare Earth Element Concentrations Supplied to the Canadian Arctic Archipelago. Earth and Planetary Science Letters, 578: 117341. https://doi.org/10.1016/j.epsl.2021.117341
      Gutjahr, M., Frank, M., Stirling, C. H., et al., 2007. Reliable Extraction of a Deepwater Trace Metal Isotope Signal from Fe-Mn Oxyhydroxide Coatings of Marine Sediments. Chemical Geology, 242(3/4): 351-370. https://doi.org/10.1016/j.chemgeo.2007.03.021
      Haley, B. A., Klinkhammer, G. P., McManus, J., 2004. Rare Earth Elements in Pore Waters of Marine Sediments. Geochimica et Cosmochimica Acta, 68(6): 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012
      Haley, B. A., Frank, M., Spielhagen, R. F., et al., 2007. Influence of Brine Formation on Arctic Ocean Circulation over the Past 15 Million Years. Nature Geoscience, 1(1): 68-72. https://doi.org/10.1038/ngeo.2007.5
      Haley, B. A., Frank, M., Spielhagen, R. F., et al., 2008. Radiogenic Isotope Record of Arctic Ocean Circulation and Weathering Inputs of the Past 15 Million Years. Paleoceanography, 23(1): PA1S13. https://doi.org/10.1029/2007pa001486
      Haley, B. A., Polyak, L., 2013. Pre‐modern Arctic Ocean Circulation from Surface Sediment Neodymium Isotopes. Geophysical Research Letters, 40(5): 893-897. https://doi.org/10.1002/grl.50188
      Holmes, R. M., McClelland, J. W., Peterson, B. J., et al., 2002. A Circumpolar Perspective on Fluvial Sediment Flux to the Arctic Ocean. Global Biogeochemical Cycles, 16(4): 45-1-45-14. https://doi.org/10.1029/2001gb001849
      Jacobsen, S. B., Wasserburg, G. J., 1984. Sm-Nd Isotopic Evolution of Chondrites and Achondrites, Ⅱ. Earth and Planetary Science Letters, 67(2): 137-150. https://doi.org/10.1016/0012-821x(84)90109-2
      Jakobsson, M., Løvlie, R., Al-Hanbali, H., et al., 2000. Manganese and Color Cycles in Arctic Ocean Sediments Constrain Pleistocene Chronology. Geology, 28(1): 23. https://doi.org/10.1130/0091-7613(2000)28<23:maccia>2.0.co;2 doi: 10.1130/0091-7613(2000)28<23:maccia>2.0.co;2
      Jakobsson, M., Nilsson, J., O'Regan, M., et al., 2010. An Arctic Ocean Ice Shelf during MIS 6 Constrained by New Geophysical and Geological Data. Quaternary Science Reviews, 29(25/26): 3505-3517. https://doi.org/10.1016/j.quascirev.2010.03.015
      Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., et al., 2014. Arctic Ocean Glacial History. Quaternary Science Reviews, 92: 40-67. https://doi.org/10.1016/j.quascirev.2013.07.033
      Jakobsson, M., Nilsson, J., Anderson, L., et al., 2016. Evidence for an Ice Shelf Covering the Central Arctic Ocean during the Penultimate Glaciation. Nature Communications, 7(1): 10365. https://doi.org/10.1038/ncomms10365
      Jang, K., Han, Y., Huh, Y., et al., 2013. Glacial Freshwater Discharge Events Recorded by Authigenic Neodymium Isotopes in Sediments from the Mendeleev Ridge, Western Arctic Ocean. Earth and Planetary Science Letters, 369-370(2): 148-157. https://doi.org/10.1016/j.epsl. 2013. 03.018 doi: 10.1016/j.epsl.2013.03.018
      Johannesson, K. H., Zhou, X. P., 1999. Origin of Middle Rare Earth Element Enrichments in Acid Waters of a Canadian High Arctic Lake. Geochimica et Cosmochimica Acta, 63(1): 153-165. https://doi.org/10.1016/s0016-7037(98)00291-9
      Kim, J., Goldstein, S. L., Pena, L. D., et al., 2021. North Atlantic Deep Water during Pleistocene Interglacials and Glacials. Quaternary Science Reviews, 269(80): 107146. https://doi.org/10.1016/j.quascirev.2021.107146
      Kolesnik, O. N., Kolesnik, A. N., 2015. Rare Earth Elements in Ferromanganese Nodules of the Chukchi Sea. Lithology and Mineral Resources, 50(3): 181-191. https://doi.org/10.1134/s0024490215030050
      Kondo, Y., Obata, H., Hioki, N., et al., 2016. Transport of Trace Metals (Mn, Fe, Ni, Zn and Cd) in the Western Arctic Ocean (Chukchi Sea and Canada Basin) in Late Summer 2012. Deep Sea Research Part I: Oceanographic Research Papers, 116(C10): 236-252. https://doi.org/10.1016/j.dsr.2016.08.010
      Li, X. Y., Wang, N. L., Ding, Y. J., et al., 2022. Globally Elevated Chemical Weathering Rates beneath Glaciers. Nature Communications, 13(1): 407. https://doi.org/10.1038/s41467-022-28032-1
      Liu, X. S., Chen, X. G., Sun, K., et al., 2021. Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene. Earth Science, 46(3): 1008-1022(in Chinese with English abstract).
      Löwemark, L., März, C., O'Regan, M., et al., 2014. Arctic Ocean Mn-Stratigraphy: Genesis, Synthesis and Inter-Basin Correlation. Quaternary Science Reviews, 92(2): 97-111. https://doi.org/10.1016/j.quascirev.2013.11.018
      Martin, E. E., Blair, S. W., Kamenov, G. D., et al., 2010. Extraction of Nd Isotopes from Bulk Deep Sea Sediments for Paleoceanographic Studies on Cenozoic Time Scales. Chemical Geology, 269(3/4): 414-431. https://doi.org/10.1016/j.chemgeo.2009.10.016
      März, C., Stratmann, A., Matthiessen, J., et al., 2011. Manganese-Rich Brown Layers in Arctic Ocean Sediments: Composition, Formation Mechanisms, and Diagenetic Overprint. Geochimica et Cosmochimica Acta, 75(23): 7668-7687. https://doi.org/10.1016/j.gca.2011.09.046
      Macdonald, R. W., Gobeil, C., 2012. Manganese Sources and Sinks in the Arctic Ocean with Reference to Periodic Enrichments in Basin Sediments. Aquatic Geochemistry, 18(6): 565-591. https://doi.org/10.1007/s10498-011-9149-9
      Meinhardt, A. K., Pahnke, K., Böning, P., et al., 2016. Climate Change and Response in Bottom Water Circulation and Sediment Provenance in the Central Arctic Ocean since the last Glacial. Chemical Geology, 427(C3): 98-108. https://doi.org/10.1016/j.chemgeo.2016.02.019
      Middag, R., de Baar, H. J. W., Laan, P., et al., 2011. Fluvial and Hydrothermal Input of Manganese into the Arctic Ocean. Geochimica et Cosmochimica Acta, 75(9): 2393-2408. https://doi.org/10.1016/j.gca.2011.02.011
      Nance, W. B., Taylor, S. R., 1976. Rare Earth Element Patterns and Crustal Evolution: Ⅰ. Australian Post-Archean Sedimentary Rocks. Geochimica et Cosmochimica Acta, 40(12): 1539-1551. https://doi.org/10.1016/0016-7037(76)90093-4
      Niessen, F., Hong, J. K., Hegewald, A., et al., 2013. Repeated Pleistocene Glaciation of the East Siberian Continental Margin. Nature Geoscience, 6(10): 842-846. https://doi.org/10.1038/ngeo1904
      Overeem, I., Nienhuis, J. H., Piliouras, A., 2022. Ice-Dominated Arctic Deltas. Nature Reviews Earth & Environment, 3(4): 225-240. https://doi.org/10.1038/s43017-022-00268-x
      Parker, R. L., Foster, G. L., Gutjahr, M., et al., 2022. Laurentide Ice Sheet Extent over the Last 130 Thousand Years Traced by the Pb Isotope Signature of Weathering Inputs to the Labrador Sea. Quaternary Science Reviews, 287(2): 107564. https://doi.org/10.1016/j.quascirev.2022.107564
      Pnyushkov, A. V., Polyakov, I. V., Ivanov, V. V., et al., 2015. Structure and Variability of the Boundary Current in the Eurasian Basin of the Arctic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 101(2): 80-97. https://doi.org/10.1016/j.dsr.2015.03.001
      Porcelli, D., Andersson, P. S., Baskaran, M., et al., 2009. The Distribution of Neodymium Isotopes in Arctic Ocean Basins. Geochimica et Cosmochimica Acta, 73(9): 2645-2659. https://doi.org/10.1016/j.gca.2008.11.046
      Poirier, R. K., Cronin, T. M., Briggs, W. M. Jr, et al., 2012. Corrigendum to "Central Arctic Paleoceanography for the last 50 Kyr Based on Ostracode Faunal Assemblages". Marine Micropaleontology, 101: 194. https://doi.org/10.1016/j.marmicro.2012.03.004
      Rachold, V., 1999. "Major, Trace and Rare Earth Element Geochemistry of Suspended Particulate Material of East Siberian Rivers Draining to the Arctic Ocean, " in Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Springer Berlin Heidelberg, 199-222. https://doi.org/10.1007/978-3-642-60134-7_20
      Roach, A. T., Aagaard, K., Pease, C. H., et al., 1995. Direct Measurements of Transport and Water Properties through the Bering Strait. Journal of Geophysical Research: Oceans, 100(C9): 18443-18457. https://doi.org/10.1029/95jc01673
      Schauer, U., Loeng, H., Rudels, B., et al., 2002. Atlantic Water Flow through the Barents and Kara Seas. Deep Sea Research Part I: Oceanographic Research Papers, 49(12): 2281-2298. https://doi.org/10.1016/s0967-0637(02)00125-5
      Stein, R., 2008. Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment. Developments in Marine Geology, 2: iii. https://doi.org/10.1016/s1572-5480(08)00014-6
      Stein, R., Matthiessen, J., Niessen, F., et al. 2010. Towards a Better (Litho-) Stratigraphy and Reconstruction of Quaternary Paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79(2): 97-121. https://doi.org/10.2312/polarforschung.79.2.97.
      Talley, L. D., 2011. Descriptive Physical Oceanography: An Introduction. Academic Press, New York.
      Tanaka, T., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chemical Geology, 168(3/4): 279-281. https://doi.org/10.1016/s0009-2541(00)00198-4
      Taylor, P. C., Boeke, R. C., Boisvert, L. N., et al., 2021. Process Drivers, Inter-Model Spread, and the Path Forward: A Review of Amplified Arctic Warming. Frontiers in Earth Science, 9: 1391. https://doi.org/10.3389/feart.2021.758361
      Tomczak, M., Godfrey, J. S., 2003. Regional Oceanography: an Introduction. Daya Books, Washington.
      Wang, F., Wu, Y. M., Ding, W. W., 2021. Sedimentary Budget and Controlling Factors of the Northwest and Southwest Sub-Basins, the South China Sea. Earth Science, 46(3): 986-1007(in Chinese with English abstract).
      Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High‐precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): 139-149. https://doi.org/10.1029/2006gc001283
      Winter, B. L., Johnson, C. M., Clark, D. L., 1997. Geochemical Constraints on the Formation of Late Cenozoic Ferromanganese Micronodules from the Central Arctic Ocean. Marine Geology, 138(1/2): 149-169. https://doi.org/10.1016/s0025-3227(97)00013-3
      Ye, L. M., März, C., Polyak, L., et al., 2019. Dynamics of Manganese and Cerium Enrichments in Arctic Ocean Sediments: A Case Study from the Alpha Ridge. Frontiers in Earth Science, 6: 236. https://doi.org/10.3389/feart.2018.00236
      Zhang, J. L., Rothrock, D. A., Steele, M., 1998. Warming of the Arctic Ocean by a Strengthened Atlantic Inflow: Model Results. Geophysical Research Letters, 25(10): 1745-1748. https://doi.org/10.1029/98gl01299
      Zimmermann, B., Porcelli, D., Frank, M., et al., 2009. Hafnium Isotopes in Arctic Ocean Water. Geochimica et Cosmochimica Acta, 73(11): 3218-3233. https://doi.org/10.1016/j.gca.2009.02.028
      刘雪松, 陈雪刚, 孙凯, 等, 2021. 南海东部次海盆U1431站位中中新世以来的沉积物来源特征. 地球科学, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290
      王菲, 吴艳梅, 丁巍伟, 2021. 南海西北与西南次海盆沉积通量及其控制因素. 地球科学, 46(3): 986-1007. doi: 10.3799/dqkx.2020.330
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (338) PDF downloads(43) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return