Citation: | Xu Tianfu, Wen Dongguang, Yuan Yilong, 2024. Technical Challenges and Strategy of Geothermal Energy Development from Hot Dry Rock. Earth Science, 49(6): 2131-2147. doi: 10.3799/dqkx.2023.047 |
Adams, B. M., Kuehn, T. H., Bielicki, J. M., et al., 2014. On the Importance of the Thermosiphon Effect in CPG (CO2 Plume Geothermal) Power Systems. Energy, 69: 409-418. https://doi.org/10.1016/j.energy.2014.03.032
|
Ader, T., Chendorain, M., Free, M., et al., 2020. Design and Implementation of a Traffic Light System for Deep Geothermal Well Stimulation in Finland. Journal of Seismology, 24(5): 991-1014. https://doi.org/10.1007/s10950⁃019⁃09853⁃y
|
Baisch, S., Koch, C., Muntendam⁃Bos, A., 2019. Traffic Light Systems: To What Extent can Induced Seismicity be Controlled? Seismological Research Letters, 90(3): 1145-1154. https://doi.org/10.1785/0220180337
|
Bu, X. B., Ran, Y. M., Wang, L. B., et al., 2019. Analysis of Key Factors Affecting Single Well Geothermal Heating. Journal of Zhejiang University (Engineering Science), 53(5): 957-964(in Chinese with English abstract).
|
Chen, Y., Huang, L. J., 2019. Optimal Design of 3D Borehole Seismic Arrays for Microearthquake Monitoring in Anisotropic Media during Stimulations in the EGS Collab Project. Geothermics, 79: 61-66. https://doi.org/10.1016/j.geothermics.2019.01.009
|
Chen, Z., Xu, G. Q., Zhou, J., et al., 2021a. Fracture Network Volume Fracturing Technology in High⁃Temperature Hard Formation of Hot Dry Rock. Acta Geologica Sinica (English Edition), 95(6): 1828-1834. https://doi.org/10.1111/1755⁃6724.14881
|
Chen, Z. B., Zhao, F., Sun, F., et al., 2021b. Hydraulic Fracturing-Induced Seismicity at the Hot Dry Rock Site of the Gonghe Basin in China. Acta Geologica Sinica (English Edition), 95(6): 1835-1843. https://doi.org/10.1111/1755⁃6724.14883
|
Chugunova, T., Corpel, V., Gomez, J. P., 2017. Explicit Fracture Network Modelling: From Multiple Point Statistics to Dynamic Simulation. Mathematical Geosciences, 49(4): 541-553. https://doi.org/10.1007/s11004⁃017⁃9687⁃9
|
Cloetingh, S., van Wees, J. D., Ziegler, P. A., et al., 2010. Lithosphere Tectonics and Thermo⁃Mechanical Properties: An Integrated Modelling Approach for Enhanced Geothermal Systems Exploration in Europe. Earth⁃Science Reviews, 102(3/4): 159-206. https://doi.org/10.1016/j.earscirev.2010.05.003
|
Cui, G. D., Ren, S. R., Qiu, Z. C., et al., 2022. Technical and Economic Analysis of Geothermal Development and Power Generation by Injecting Supercritical CO2 in Low⁃Permeability Depleted Gas Reservoirs. Acta Petrolei Sinica, 43(1): 156-166(in Chinese with English abstract).
|
Montecinos⁃Cuadros, D., Díaz, D., Yogeshwar, P., et al., 2021. Characterization of the Shallow Structure of El Tatio Geothermal Field in the Central Andes, Chile Using Transient Electromagnetics. Journal of Volcanology and Geothermal Research, 412: 107198. https://doi.org/10.1016/j.jvolgeores.2021.107198
|
Ding, Y. S., Chen, L., Xie, X., et al., 2001. On the Stimulation with "Exploding in Fractures" in Low Permeability Reservoirs. Petroleum Exploration and Development, 28(2): 90-96, 106-113, 123(in Chinese with English abstract).
|
Dorn, C., Linde, N., Le Borgne, T., et al., 2012. Inferring Transport Characteristics in a Fractured Rock Aquifer by Combining Single⁃Hole Ground⁃Penetrating Radar Reflection Monitoring and Tracer Test Data. Water Resources Research, 48(11). https://doi.org/10.1029/2011wr011739.
|
Fagan, W. F., Swain, A., Banerjee, A., et al., 2022. Quantifying Interdependencies in Geyser Eruptions at the Upper Geyser Basin, Yellowstone National Park. Journal of Geophysical Research: Solid Earth, 127(8): e2021JB023749. https://doi.org/10.1029/2021jb023749
|
Feng, B., Xu, J. N., Xu, T. F., et al., 2019. Application and Recent Progresses of Chemical Stimulation on Hot Dry Rock Reservoir Modification. Journal of Earth Sciences and Environment, 41(5): 577-591(in Chinese with English abstract).
|
Follin, S., Hartley, L., Rhén, I., et al., 2014. A Methodology to Constrain the Parameters of a Hydrogeological Discrete Fracture Network Model for Sparsely Fractured Crystalline Rock, Exemplified by Data from the Proposed High⁃Level Nuclear Waste Repository Site at Forsmark, Sweden. Hydrogeology Journal, 22(2): 313-331. https://doi.org/10.1007/s10040⁃013⁃1080⁃2
|
Fridleifsson, G. O., Bogason, S. G., Ingolfsson, H. P., et al., 2016. Deployment of Deep Enhanced Geothermal Systems for Sustainable Energy Business. European Geothermal Congress, Strasbourg, France, 19-24.
|
Gan, H. N., Wang, G. L., Lin, W. J., et al., 2015. Research on the Occurrence Types and Genetic Models of Hot Dry Rock Resources in China. Science & Technology Review, 33(19): 22-27(in Chinese with English abstract).
|
Gong, L., Han, D. X., Chen, Z., et al., 2022. Research Status and Development Trend of Key Technologies for an Enhanced Geothermal System. Natural Gas Industry, 42(7): 135-159(in Chinese with English abstract).
|
Guo, Q. H., He, T., Zhuang, Y. Q., et al., 2020. Expansion of Fracture Network in Granites via Chemical Stimulation: A Laboratory Study. Earth Science Frontiers, 27(1): 159-169(in Chinese with English abstract).
|
Guo, W., Wang, Z. D., Li, Q., et al., 2017. A Method of Artificial Construction of Dry Hot Rock Thermal Reservoir. China: CN107288606A, 2017-10-24(in Chinese).
|
Hu, Z. X., Xu, T. F., Moore, J., et al., 2022. Investigation of the Effect of Different Injection Schemes on Fracture Network Patterns in Hot Dry Rocks: A Numerical Case Study of the FORGE EGS Site in Utah. Journal of Natural Gas Science and Engineering, 97: 104346. https://doi.org/10.1016/j.jngse.2021.104346
|
Horálek, J., Jechumtálová, Z., Dorbath, L., et al., 2010. Source Mechanisms of Micro⁃Earthquakes Induced in a Fluid Injection Experiment at the HDR Site Soultz⁃Sous⁃Forêts (Alsace) in 2003 and Their Temporal and Spatial Variations. Geophysical Journal International, 181(3): 1547-1565. https://doi.org/10.1111/j.1365⁃246X.2010.04506.x
|
Huang, H., Liu, R., Li, Q., et al., 2021. Overview on Multi⁃Level Utilization Techniques of Geothermal Energy. Thermal Power Generation, 50(9): 1-10(in Chinese with English abstract).
|
Huang, J. B., Yan, P., Lu, W. B., et al., 2020. Study on Damage Characteristics of Blasthole Surrounding Rock under High Temperature. Chinese Journal of Rock Mechanics and Engineering, 39(11): 2244-2253(in Chinese with English abstract).
|
Jeong, H., Jeon, B., Choi, S., et al., 2020. Fracturing Behavior around a Blasthole in a Brittle Material under Blasting Loading. International Journal of Impact Engineering, 140: 103562. https://doi.org/10.1016/j.ijimpeng.2020.103562
|
Jiang, F. M., Huang, W. B., Cao, W. J., 2017. Mining Hot Dry Rock Geothermal Energy by Heat Pipe: Conceptual Design and Technical Feasibility Study. Advances in New and Renewable Energy, 5(6): 426-434(in Chinese with English abstract).
|
Joseph, M., John, M., Kristine, P., et al., 2020. The Utah Frontier Observatory for Research in Geothermal Energy (FORGE): A Laboratory for Characterizing, Creating and Sustaining Enhanced Geothermal Systems. Proceedings, 45th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
|
Joseph, M., John, M., Rick, A., et al., 2019. The Utah Frontier Observatory for Research in Geothermal Energy (FORGE): An International Laboratory for Enhanced Geothermal System Technology Development. Proceedings, 44th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
|
Kang, M. Q., Zhu, Q. H., 2022. Application of Laser Rock Breaking to Geothermal Energy Development of Hot Dry Rocks. Sino⁃Global Energy, 27(10): 20-25(in Chinese with English abstract).
|
Kim, K. H., Ree, J. H., Kim, Y., et al., 2018. Assessing Whether the 2017 Mw 5.4 Pohang Earthquake in South Korea was an Induced Event. Science, 360(6392): 1007-1009. https://doi.org/10.1126/science.aat6081
|
Kraal, K. O., Ayling, B. F., Blake, K., et al., 2021. Linkages between Hydrothermal Alteration, Natural Fractures, and Permeability: Integration of Borehole Data for Reservoir Characterization at the Fallon FORGE EGS Site, Nevada, USA. Geothermics, 89: 101946. https://doi.org/10.1016/j.geothermics.2020.101946
|
Kwiatek, G., Saarno, T., Ader, T., et al., 2019. Controlling Fluid⁃Induced Seismicity during a 6.1⁃km⁃Deep Geothermal Stimulation in Finland. Science Advances, 5(5): eaav7224. https://doi.org/10.1126/sciadv.aav7224
|
Laughlin, A. W., Eddy, A. C., Laney, R., et al., 1983. Geology of the Fenton Hill, New Mexico, Hot Dry Rock Site. Journal of Volcanology and Geothermal Research, 15(1-3): 21-41. https://doi.org/10.1016/0377⁃0273(83)90094⁃x
|
Lei, Z. H., Zhang, Y. J., Zhang, S. Q., et al., 2020. Electricity Generation from a Three⁃Horizontal⁃Well Enhanced Geothermal System in the Qiabuqia Geothermal Field, China: Slickwater Fracturing Treatments for Different Reservoir Scenarios. Renewable Energy, 145: 65-83. https://doi.org/10.1016/j.renene.2019.06.024
|
Li, D. W., Wang, Y. X., 2015. Major Issues of Research and Development of Hot Dry Rock Geothermal Energy. Earth Science, 40(11): 1858-1869(in Chinese with English abstract).
|
Li, G. S., Wu, X. G., Song, X. Z., et al., 2022. Status and Challenges of Hot Dry Rock Geothermal Resource Exploitation. Petroleum Science Bulletin, 7(3): 343-364(in Chinese with English abstract).
|
Li, S. T., Zhang, S. Q., Jia, X. F., et al., 2018. Index System Research of Project Site Selection for Dry Hot Rocks Exploration. Geological Survey of China, 5(2): 64-72(in Chinese with English abstract).
|
Lin, W. J., Liu, Z. M., Ma, F., et al., 2012. An Estimation of HDR Resources in China's Mainland. Acta Geoscientica Sinica, 33(5): 807-811(in Chinese with English abstract).
|
Lin, W. J., Wang, G. L., Shao, J. L., et al., 2021. Distribution and Exploration of Hot Dry Rock Resources in China: Progress and Inspiration. Acta Geologica Sinica, 95(5): 1366-1381(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.05.004
|
Liu, C. Y., Sun, Z. Y., Zhang, R. S., et al., 2014. Research on Stimulated Reservoir Volume with Exploding in Horizontal Well⁃Bore. Well Testing, 23(6): 4-8, 73(in Chinese with English abstract).
|
Liu, D. M., Wei, M. H., Sun, M. H., et al., 2022. Classification and Determination of Thermal Control Structural System of Hot Dry Rock. Earth Science, 47(10): 3723-3735(in Chinese with English abstract).
|
Lu, S. M., 2018. A Global Review of Enhanced Geothermal System (EGS). Renewable and Sustainable Energy Reviews, 81: 2902-2921. https://doi.org/10.1016/j.rser.2017.06.097
|
Luginbuhl, M., Rundle, J. B., Turcotte, D. L., 2018. Statistical Physics Models for Aftershocks and Induced Seismicity. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2136): 20170397. https://doi.org/10.1098/rsta.2017.0397
|
Makoye, M. D., Egidio, A., Gylfi, P., et al., 2022. Regional Thermal Anomalies Derived from Magnetic Spectral Analysis and 3D Gravity Inversion: Implications for Potential Geothermal Sites in Tanzania. Geothermics, 103: 102431. https://doi.org/10.1016/j.geothermics.2022.102431
|
MIT, 2006. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology, Boston, MA, U. S. A. .
|
Mokhtari, H., Hadiannasab, H., Mostafavi, M., et al., 2016. Determination of Optimum Geothermal Rankine Cycle Parameters Utilizing Coaxial Heat Exchanger. Energy, 102: 260-275. https://doi.org/10.1016/j.energy.2016.02.067
|
Pandey, S. N., Vishal, V., Chaudhuri, A., 2018. Geothermal Reservoir Modeling in a Coupled Thermo⁃Hydro⁃Mechanical⁃Chemical Approach: A Review. Earth⁃Science Reviews, 185: 1157-1169. https://doi.org/10.1016/j.earscirev.2018.09.004
|
Porter, R. T. J., Striolo, A., Mahgerefteh, H., et al., 2019. Addressing the Risks of Induced Seismicity in Subsurface Energy Operations. WIREs Energy and Environment, 8(2): e324. https://doi.org/10.1002/wene.324
|
Pruess, K., 2006. Enhanced Geothermal Systems (EGS) Using CO2 as Working Fluid: A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon. Geothermics, 35(4): 351-367. https://doi.org/10.1016/j.geothermics.2006.08.002
|
Ran, H. Q., Feng, Q. Z., 2010. Some Technical Issues on Hot Dry Rock Exploration in China. Exploration Engineering (Rock & Soil Drilling and Tunneling), 37(10): 17-21(in Chinese with English abstract).
|
Rathnaweera, T. D., Wu, W., Ji, Y. L., et al., 2020. Understanding Injection⁃Induced Seismicity in Enhanced Geothermal Systems: From the Coupled Thermo⁃Hydro⁃Mechanical⁃Chemical Process to Anthropogenic Earthquake Prediction. Earth⁃Science Reviews, 205: 103182. https://doi.org/10.1016/j.earscirev.2020.103182
|
Rossi, E., Jamali, S., Saar, M. O., et al., 2020. Field Test of a Combined Thermo⁃Mechanical Drilling Technology. Mode I: Thermal Spallation Drilling. Journal of Petroleum Science and Engineering, 190: 107005. https://doi.org/10.1016/j.petrol.2020.107005
|
Simmons, S. F., Allis, R. G., Kirby, S. M., et al., 2021. Interpretation of Hydrothermal Conditions, Production⁃Injection Induced Effects, and Evidence for Enhanced Geothermal System⁃Type Heat Exchange in Response to > 30 Years of Production at Roosevelt Hot Springs, Utah, USA. Geosphere, 17(6): 1997-2026. https://doi.org/10.1130/ges02348.1
|
Sun, Z. X., Li, B. X., Wang, Z. L., 2011. Exploration of the Possibility of Hot Dry Rock Occurring in the Qinghai Gonghe Basin. Hydrogeology & Engineering Geology, 38(2): 119-124, 129(in Chinese with English abstract).
|
Tang, X. H., Shao, Z. L., Xu, J. J., et al., 2022. The Degradation Mechanism of Granite after the Cyclic Treatment of Heating and Liquid Nitrogen Cooling. Hazard Control in Tunnelling and Underground Engineering, 4(1): 18-28(in Chinese with English abstract).
|
Wang, G. L., Liu, Y. G., Zhu, X., et al., 2020. The Status and Development Trend of Geothermal Resources in China. Earth Science Frontiers, 27(1): 1-9(in Chinese with English abstract).
|
Wang, J. Y., Hu, S. B., Pang, Z. H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science & Technology Review, 30(32): 25-31(in Chinese with English abstract).
|
Wang, Y. J., Jiang, J. Y., Darkwa, J., et al., 2020. Experimental Study of Thermal Fracturing of Hot Dry Rock Irradiated by Moving Laser Beam: Temperature, Efficiency and Porosity. Renewable Energy, 160: 803-816. https://doi.org/10.1016/j.renene.2020.06.138
|
Wen, D. G., Song, J., Diao, Y. J., et al., 2022. Opportunities and Challenges in Deep Hydrogeological Research. Earth Science Frontiers, 29(3): 11-24(in Chinese with English abstract).
|
Wiemer, S., Kraft, T., Trutnevyte, E., et al., 2017. "Good Practice" Guide for Managing Induced Seismicity in Deep Geothermal Energy Projects in Switzerland. Geophysical Research Abstracts, 20: 15021. http://dx. doi.org/10.12686/a5
|
Wu, J. J., 2011. Action Mechanism and Technology Test of the Explosion Technique in Low⁃Permeability Oil Layers. Journal of Xi'an Shiyou University (Natural Science Edition), 26(1): 48-50, 119(in Chinese with English abstract).
|
Wu, X. G., Huang, Z. W., Zhao, H. Q., et al., 2019. A Transient Fluid⁃Thermo⁃Structural Coupling Study of High⁃Velocity LN2 Jet Impingement on Rocks. International Journal of Rock Mechanics and Mining Sciences, 123: 104061. https://doi.org/10.1016/j.ijrmms.2019.10406
|
Xie, J. Y., Li, L., Wen, D. G., et al., 2021. Experiments and Analysis of the Hydraulic Fracture Propagation Behaviors of the Granite with Structural Planes in the Gonghe Basin. Acta Geologica Sinica (English Edition), 95(6): 1816-1827. https://doi.org/10.1111/1755⁃6724.14874
|
Xie, J. Y., Wang, D., Li, N., et al., 2022. Development Status and Suggestions of Hot Dry Rock Hydraulic Fracturing for Building Geothermal Reservoirs. Bulletin of Geological Science and Technology, 41(3): 321-329(in Chinese with English abstract).
|
Xing, P. J., Damjanac, B., Moore, J., et al., 2022a. Flowback Test Analyses at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Site. Rock Mechanics and Rock Engineering, 55(5): 3023-3040. https://doi.org/10.1007/s00603⁃021⁃02604⁃x
|
Xing, P. J., McLennan, J., Moore, J., 2022b. Minimum In⁃Situ Stress Measurement Using Temperature Signatures. Geothermics, 98: 102282. https://doi.org/10.1016/j.geothermics.2021.102282
|
Xing, P. J., Wray, A., Arteaga, E. I., et al., 2022c. In⁃Situ Stresses and Fractures Inferred from Image Logs at Utah FORGE. Proceedings, 47th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.
|
Xu, T. F., Hu, Z. X., Li, S. T., et al., 2018. Enhanced Geothermal System: International Progresses and Research Status of China. Acta Geologica Sinica, 92(9): 1936-1947(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.09.012
|
Xu, T. F., Moore, J., Jiang, Z. J., 2021. The Special Issue on Hot Dry Rock Resource Exploration and Enhanced Geothermal Engineering. Acta Geologica Sinica (English Edition), 95(6): 1-4. https://doi.org/10.1111/1755⁃6724.14868
|
Xu, T. F., Yuan, Y. L., Jia, X. F., et al., 2018. Prospects of Power Generation from an Enhanced Geothermal System by Water Circulation through Two Horizontal Wells: A Case Study in the Gonghe Basin, Qinghai Province, China. Energy, 148: 196-207. https://doi.org/10.1016/j.energy.2018.01.135
|
Xu, T. F., Yuan, Y. L., Jiang, Z. J., et al., 2016. Hot Dry Rock and Enhanced Geothermal Engineering: International Experience and China Prospect. Journal of Jilin University (Earth Science Edition), 46(4): 1139-1152(in Chinese with English abstract).
|
Xu, T. F., Zhang, Y. J., Zeng, Z. F., et al., 2012. Technology Progress in an Enhanced Geothermal System (Hot Dry Rock). Science & Technology Review, 30(32): 42-45(in Chinese with English abstract).
|
Yang, Y. Jiang, Z. H., Yue, J. H., et al., 2019. Discussion on Application of Geophysical Methods in Hot Dry Rock(HDR)Exploration. Progress in Geophysics, 34(4): 1556-1567(in Chinese with English abstract).
|
Yari, M., 2010. Exergetic Analysis of Various Types of Geothermal Power Plants. Renewable Energy, 35(1): 112-121. https://doi.org/10.1016/j.renene.2009.07.023
|
Yin, X. X., Jiang, C. S., Zhai, H. Y., et al., 2021. Review of Induced Seismicity and Disaster Risk Control in Dry Hot Rock Resource Development Worldwide. Chinese Journal of Geophysics, 64(11): 3817-3836(in Chinese with English abstract). doi: 10.6038/cjg2021O0448
|
Yu, Y., Ma, Y. Y., 2022. Research on Occurrence Types and Development of Hot Dry Rock Resources in China. Natural Resources Information, (5): 36-42(in Chinese with English abstract).
|
Yuan, Y. L., Xu, T. F., Moore, J., et al., 2020. Coupled Thermo-Hydro-Mechanical Modeling of Hydro-Shearing Stimulation in an Enhanced Geothermal System in the Raft River Geothermal Field, USA. Rock Mechanics and Rock Engineering, 53(12): 5371-5388. https://doi.org/10.1007/s00603⁃020⁃02227⁃8
|
Zhai, L. J., 2020. Study on the Technology of "Taking Heat without Taking Water" for U⁃Shaped Docking Wells in Middle and Deep Layers. Coal Geology of China, 31(Suppl. 1): 12-15, 65(in Chinese).
|
Zhang, B. J., Li, Y. Y., Gao, J., et al., 2020. Genesis and Indicative Significance of Hot Dry Rock in Matouying, Hebei Province. Acta Geologica Sinica, 94(7): 2036-2051(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.012
|
Zhang, E. Y., 2022. Brief Introduction of Dry⁃Hot Rock Resources Investigation and Exploration Trial Mining Demonstration Project. Geology in China, 49(2): 350(in Chinese).
|
Zhang, J., Xie, J. X., 2021. Design and Productivity Evaluation of Multi⁃Lateral Well Enhanced Geothermal Development System. Natural Gas Industry, 41(3): 179-188(in Chinese with English abstract).
|
Zhang, K., 2020. Discussion on Technical Difficulties of Drilling in Dry⁃Hot Rocks. Coal Geology of China, 31(Suppl. 1): 104-107(in Chinese).
|
Zhang, S. Q., Li, X. F., Song, J., et al., 2021. Analysis on Geophysical Evidence for Existence of Partial Melting Layer in Crust and Regional Heat Source Mechanism for Hot Dry Rock Resources of Gonghe Basin. Earth Science, 46(4): 1416-1436(in Chinese with English abstract).
|
Zhang, Y., Gao, L., Liu, X. C., et al., 2022. Drilling Technology of the M⁃1 Well in Hot Dry Rock of Matouying, Tangshan. Geology and Exploration, 58(1): 176-186(in Chinese with English abstract).
|
Zhao, G. F., Yu, L., Li, B. X., et al., 2016. Discussion on Comprehensive Geophysical Exploration Technology of Dry⁃Hot Rocks from Geothermal Exploration Results in Gonghe⁃Guide Basin of Qinghai Province. Gansu Geology, 25(2): 62-67(in Chinese).
|
Zhao, Y. S., Wan, Z. J., Zhang, Y., et al., 2010. Experimental Study of Related Laws of Rock Thermal Cracking and Permeability. Chinese Journal of Rock Mechanics and Engineering, 29(10): 1970-1976(in Chinese with English abstract).
|
Zhao, Y. S., Xi, B. P., Wan, Z. J., et al., 2009. Study of Critical Condition of Borehole Instability in Granite under High Temperature and High Pressure. Chinese Journal of Rock Mechanics and Engineering, 28(5): 865-874(in Chinese with English abstract).
|
Zhong, C. H., Xu, T. F., Yuan, Y. L., et al., 2022. The Feasibility of Clean Power Generation from a Novel Dual⁃Vertical⁃Well Enhanced Geothermal System (EGS): A Case Study in the Gonghe Basin, China. Journal of Cleaner Production, 344: 131109. https://doi.org/10.1016/j.jclepro.2022.131109
|
Zhu, Z. N., Yang, S. Q., Ranjith, P. G., et al., 2023. A Comprehensive Review on Mechanical Responses of Granite in Enhanced Geothermal Systems (EGSs). Journal of Cleaner Production, 383: 135378. https://doi.org/10.1016/j.jclepro.2022.135378
|
卜宪标, 冉运敏, 王令宝, 等, 2019. 单井地热供暖关键因素分析. 浙江大学学报(工学版), 53(5): 957-964. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201905017.htm
|
崔国栋, 任韶然, 裘智超, 等, 2022. 低渗废弃气藏注超临界CO2采热发电技术及经济性分析. 石油学报, 43(1): 156-166. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201012.htm
|
丁雁生, 陈力, 谢燮, 等, 2001. 低渗透油气田"层内爆炸" 增产技术研究. 石油勘探与开发, 28(2): 90-96, 106-113, 123. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805017.htm
|
冯波, 许佳男, 许天福, 等, 2019. 化学刺激技术在干热岩储层改造中的应用与最新进展. 地球科学与环境学报, 41(5): 577-591. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201905009.htm
|
甘浩男, 王贵玲, 蔺文静, 等, 2015. 中国干热岩资源主要赋存类型与成因模式. 科技导报, 33(19): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201519012.htm
|
巩亮, 韩东旭, 陈峥, 等, 2022. 增强型地热系统关键技术研究现状及发展趋势. 天然气工业, 42(7): 135-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202207016.htm
|
郭清海, 何曈, 庄亚芹, 等, 2020. 化学刺激法提高花岗岩类岩石裂隙渗透性的实验研究. 地学前缘, 27(1): 159-169. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001020.htm
|
郭威, 王振东, 李强, 等, 2017. 一种人工建造干热岩热储层的方法. 中国: CN107288606A, 2017-10-24.
|
黄璜, 刘然, 李茜, 等, 2021. 地热能多级利用技术综述. 热力发电, 50(9): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-RLFD202109001.htm
|
黄江北, 严鹏, 卢文波, 等, 2020. 高温条件下炮孔围岩爆炸冲击损伤特性研究. 岩石力学与工程学报, 39(11): 2244-2253. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011008.htm
|
蒋方明, 黄文博, 曹文炅, 2017. 干热岩热能的热管开采方案及其技术可行性研究. 新能源进展, 5(6): 426-434. https://www.cnki.com.cn/Article/CJFDTOTAL-XNYJ201706003.htm
|
康民强, 朱启华, 2022. 激光破岩在干热岩地热能开发中的应用探讨. 中外能源, 27(10): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZW202210004.htm
|
李德威, 王焰新, 2015. 干热岩地热能研究与开发的若干重大问题. 地球科学, 40(11): 1858-1869. doi: 10.3799/dqkx.2015.166
|
李根生, 武晓光, 宋先知, 等, 2022. 干热岩地热资源开采技术现状与挑战. 石油科学通报, 7(3): 343-364. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202203006.htm
|
李胜涛, 张森琦, 贾小丰, 等, 2018. 干热岩勘查开发工程场地选址评价指标体系研究. 中国地质调查, 5(2): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201802010.htm
|
蔺文静, 刘志明, 马峰, 等, 2012. 我国陆区干热岩资源潜力估算. 地球学报, 33(5): 807-811. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201205018.htm
|
蔺文静, 王贵玲, 邵景力, 等, 2021. 我国干热岩资源分布及勘探: 进展与启示. 地质学报, 95(5): 1366-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202302019.htm
|
刘长印, 孙志宇, 张汝生, 等, 2014. 水平井层内爆炸裂缝体模拟研究. 油气井测试, 23(6): 4-8, 73. https://www.cnki.com.cn/Article/CJFDTOTAL-YQJC201406002.htm
|
刘德民, 韦梅华, 孙明行, 等, 2022. 干热岩控热构造系统厘定与类型划分. 地球科学, 47(10): 3723-3735. doi: 10.3799/dqkx.2022.058
|
冉恒谦, 冯起赠, 2010. 我国干热岩勘查的有关技术问题. 探矿工程(岩土钻掘工程), 37(10): 17- https://www.cnki.com.cn/Article/CJFDTOTAL-TKGC201010009.htm
|
孙知新, 李百祥, 王志林, 2011. 青海共和盆地存在干热岩可能性探讨. 水文地质工程地质, 38(2): 119-124, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201102023.htm
|
唐旭海, 邵祖亮, 许婧璟, 等, 2022. 高温-液氮循环处理下花岗岩损伤劣化机制. 隧道与地下工程灾害防治, 4(1): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202201003.htm
|
王贵玲, 刘彦广, 朱喜, 等, 2020. 中国地热资源现状及发展趋势. 地学前缘, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm
|
汪集旸, 胡圣标, 庞忠和, 等, 2012. 中国大陆干热岩地热资源潜力评估. 科技导报, 30(32): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232017.htm
|
文冬光, 宋健, 刁玉杰, 等, 2022. 深部水文地质研究的机遇与挑战. 地学前缘, 29(3): 11-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203002.htm
|
吴晋军, 2011. 低渗油层层内深度爆炸技术作用机理及工艺试验研究. 西安石油大学学报(自然科学版), 26(1): 48-50, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201101012.htm
|
解经宇, 王丹, 李宁, 等, 2022. 干热岩压裂建造人工热储发展现状及建议. 地质科技通报, 41(3): 321-329. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202203034.htm
|
许天福, 胡子旭, 李胜涛, 等, 2018. 增强型地热系统: 国际研究进展与我国研究现状. 地质学报, 92(9): 1936-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202002006.htm
|
许天福, 袁益龙, 姜振蛟, 等, 2016. 干热岩资源和增强型地热工程: 国际经验和我国展望. 吉林大学学报(地球科学版), 46(4): 1139-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604012.htm
|
许天福, 张延军, 曾昭发, 等, 2012. 增强型地热系统(干热岩)开发技术进展. 科技导报, 30(32): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232020.htm
|
杨冶, 姜志海, 岳建华, 等, 2019. 干热岩勘探过程中地球物理方法技术应用探讨. 地球物理学进展, 34(4): 1556-1567. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201904035.htm
|
尹欣欣, 蒋长胜, 翟鸿宇, 等, 2021. 全球干热岩资源开发诱发地震活动和灾害风险管控. 地球物理学报, 64(11): 3817-3836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202111002.htm
|
余毅, 马艺媛, 2022. 中国干热岩资源赋存类型与开发利用. 自然资源情报, 5): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZQ202205006.htm
|
翟丽娟, 2020. 中深层U型对接井"取热不取水" 技术研究. 中国煤炭地质, 31(增刊1): 12-15, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202404012.htm
|
张保建, 李燕燕, 高俊, 等, 2020. 河北省马头营干热岩的成因机制及其示范意义. 地质学报, 94(7): 2036-2051. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202007012.htm
|
张二勇, 2022. 干热岩资源调查与勘查试采示范工程简介. 中国地质, 49(2): 350. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202202029.htm
|
张杰, 谢经轩, 2021. 多分支井增强型地热开发系统设计及产能评价. 天然气工业, 41(3): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103027.htm
|
张凯, 2020. 干热岩钻井技术难点探讨. 中国煤炭地质, 31(增刊1): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT2020S1028.htm
|
张森琦, 李旭峰, 宋健, 等, 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析. 地球科学, 46(4): 1416-1436. doi: 10.3799/dqkx.2020.094
|
张云, 高亮, 刘现川, 等, 2022. 唐山马头营干热岩M⁃1井钻井工艺技术. 地质与勘探, 58(1): 176-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202201017.htm
|
赵贵福, 尉亮, 李百祥, 等, 2016. 从青海共和—贵德盆地地热勘查成果探讨干热岩综合地球物理勘查技术. 甘肃地质, 25(2): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201602010.htm
|
赵阳升, 万志军, 张渊, 等, 2010. 岩石热破裂与渗透性相关规律的试验研究. 岩石力学与工程学报, 29(10): 1970-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010006.htm
|
赵阳升, 郤保平, 万志军, 等, 2009. 高温高压下花岗岩中钻孔变形失稳临界条件研究. 岩石力学与工程学报, 28(5): 865-874. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905004.htm
|