• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 8
    Aug.  2024
    Turn off MathJax
    Article Contents
    Kang Fengxin, Sui Haibo, Zheng Tingting, Xu Qiuxiao, 2024. Formation Mechanism of Cold Springs and Hot Springs in Karst Groundwater Systems in North China: A study of Baotu Spring. Earth Science, 49(8): 2862-2878. doi: 10.3799/dqkx.2023.051
    Citation: Kang Fengxin, Sui Haibo, Zheng Tingting, Xu Qiuxiao, 2024. Formation Mechanism of Cold Springs and Hot Springs in Karst Groundwater Systems in North China: A study of Baotu Spring. Earth Science, 49(8): 2862-2878. doi: 10.3799/dqkx.2023.051

    Formation Mechanism of Cold Springs and Hot Springs in Karst Groundwater Systems in North China: A study of Baotu Spring

    doi: 10.3799/dqkx.2023.051
    • Received Date: 2023-03-06
      Available Online: 2024-08-27
    • Publish Date: 2024-08-25
    • To discriminate the correlation between normal temperature groundwater and geothermal water, by analyzing the characteristics and patterns of spatial distribution of aquifer/thermal reservoir, isotopic dating, hydrogeochemical field, hydrodynamic field and temperature field, the evolution process and driving mechanism of karst groundwater flow system in Baotu spring catchment from shallow to middle and to deep circulation subsystems, i.e., from cold springs to hot springs, are revealed. Driven by the gravitational potential energy difference, the groundwater flows from the open groundwater flow system in the upper reaches to the semi-open groundwater flow system in the middle reaches along the Jinan karst aquifer system.A small part of groundwater passes through from the deep or bypasses the Jinan gabbro mass, and migrates to the downstream along the fissure karst channel, forming a weakly open geothermal water flow system. Such five sources of heat accumulation drive normal temperature groundwater of 14-18℃ to be heated into geothermal water of 33-95 ℃ as the high terrestrial heat flux accumulation, the belt shaped convective thermal accumulation in the deep fault zone or intrusive rock-limestone contact zone, the high thermal conductivity diffluence accumulation in the uplift area, theheat preservation accumulation by low thermal conductivity cap rock, and the conductive-convective thermal accumulation by deep groundwater circulation.

       

    • loading
    • Aquilina, L., Ladouche, B., Doerfliger, N., et al., 2002. Origin, Evolution and Residence Time of Saline Thermal Fluids (Balaruc Springs, Southern France): Implications for Fluid Transfer Across the Continental Shelf. Chemical Geology, 192(1-2): 1-21. https://doi.org/10.1016/S0009-2541(02)00160-2
      Barbieri, M., Morotti, M., 2003. Hydrogeochemistry and Strontium Isotopes of Spring and Mineral Waters from Monte Vulture Volcano, Italy. Applied Geochemistry, 18(1): 117-125. https://doi.org/10.1016/s0883-2927(02)00069-0
      Bicalho, C. C., Batiot-Guilhe, C., Taupin, J. D., et al., 2019. A Conceptual Model for Groundwater Circulation Using Isotopes and Geochemical Tracers Coupled with Hydrodynamics: A Case Study of the Lez Karst System, France. Chemical Geology, 528(3-4): 118442. https://doi.org/10.1016/j.chemgeo.2017.08.014
      Clauser, C., Huenges, E., 1995. Thermal Conductivity of Rocks and Minerals Rock Physics and Phase Relations. In: A Handbook of Physical Constants, 105-126.
      Ford, D. C., Williams, P. W.,, 2007. Karst Geomorphology and Hydrology. Wiley, USA, 562.
      Goldscheider, N., Chen, Z., Auler, A. S., et al., 2020. Global Distribution of Carbonate Rocks and Karst Water Resources. Hydrogeology Journal, 28(5): 1661-1677. https://doi.org/10.1007/s10040-020-02139-5
      Gong, Y. L., Wang, L. S., Liu, S. W., et al., 2004. Distribution Characteristics of Terrestrial Heat Flow Density in Jiyang Depression of Shengli Oilfield, East China. Science in China Series D: Earth Sciences, 47(9): 804-812. https://doi.org/10.1007/bf03653273
      Hu, S. B., Huang, S. P., 2015. Terrestrial Heat flow in China. In: Wang, J. Y., eds., Geothermics and Its Applications. Science Press, Beijing, 64-122.
      Imbach, T., 1997. Deep Groundwater Circulation in the Tectonically Active Area of Bursa, Northwest Anatolia, Turkey. Geothermics, 26(2): 251-278. https://doi.org/10.1016/s0375-6505(96)00043-0
      Jiang, G. Z., Gao, P., Rao, S., et al, 2016. Compilation of Heat Flow Data in the Continental Area of China(4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910.
      Kang, F. X., 2010. Sustainable Development of Geothermal Resources in China. Proceedings World Geothermal Congress 2010, Bali, Indonesia, 1-5.
      Kang, F. X., Jin, M. G., Qin, P. R., 2011. Sustainable Yield of a Karst Aquifer System: A Case Study of Jinan Springs in Northern China. Hydrogeology Journal, 19(4): 851-863. https://doi.org/10.1007/s10040-011-0725-2
      Kang, F. X., Sui, H. B., Zheng, T. T., 2020. Heat Accumulation and Water Enrichment Mechanism of Piedmont Karstic Geothermal Reservoirs: a Case Study of Northern Jinan. Acta Geologica Sinica, 94(5): 1606-1624. https://doi.org/10.19762/j.cnki.dizhixuebao.2020150
      Kang, F. X., Xu, J. X., Liu, Z., et al., 2005. Geothermal Resources Potential Assessment in Shandong Province, China. Proceedings World Geothermal Congress 2005, Antalya, Turkey, 1-5.
      Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630(3): 208-221. https://doi.org/10.1016/j.tecto.2014.05.028
      Li, C. M., 1985. Analysis on Karst Resources and Preservation of Famous Springs in Jinan. Carsologica Sinica, (1-2): 31-38(in Chinese with English abstract).
      Li, C. M., Li, L., Tao, W. W., 2002. Current and Long-Term Countermeasures of Protection Spring to Provide Water in Jinan City. Geology of Shandong, 18(6): 37-40(in Chinese with English abstract).
      Li, F. L., Ma, J. G., Li, Y. G., et al., 2002. Study on Controlling Parameters of Jinan Spring Groups Gushing and Macro-Methods of Spring Protection and Water Supply. Carsologica Sinica, 21(3): 188-194(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2002.03.007
      Liang, X., Zhang, R. Q., Jin, M. G., 2015. Groundwater Flow System: Theoretical Application Survey. Geological Publishing House, Beijing, 19 (in Chinese).
      Liang, Y. P., Shen, H. Y., Zhao, C. H., et al., 2021. Thinking and Practice on the Research Direction of Karst Water in Northern China. Carsologica Sinica, 40(3): 363-380(in Chinese with English abstract).
      Liang, Y. P., Wang, W. T., 2010. The Division and Characteristics of Karst Water Systems in Northern China. Acta Geoscientica Sinica, 31(6): 860-868 (in Chinese with English abstract).
      Liang, Y. P., Wang, W. T., Zhao, C. H., et al., 2013. Variations of Karst Water and Environmental Problems in North China. Carsologica Sinica, 32(1): 34-42(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2013.01.006
      Liu., G. A., Zhao, X. H., 1997. Dynamic Characteristics of Karst Water in Jinan Spring Field and Discussion on some Questions Related. Geology of Shandong, 12(2): 67-73(in Chinese with English abstract).
      Ma, R., Wang, Y. X., Sun, Z. Y., et al., 2011. Geochemical Evolution of Groundwater in Carbonate Aquifers in Taiyuan, Northern China. Applied Geochemistry, 26(5): 884-897. https://doi.org/10.1016/j.apgeochem.2011.02.008
      McClymont, A. F., Roy, J. W., Hayashi, M., et al., 2011. Investigating Groundwater Flow Paths within Proglacial Moraine Using Multiple Geophysical Methods. Journal of Hydrology, 399(1/2): 57-69. https://doi.org/10.1016/j.jhydrol.2010.12.036
      Oraseanu, I., Mather, J., 2000. Karst Hydrogeology and Origin of Thermal Waters in the Codru Moma Mountains, Romania. Hydrogeology Journal, 8(4): 379-389. https://doi.org/10.1007/s100400000080
      Pang, Z. H., Pang, J. M., Kong, Y. L., et al., 2015. Large Karstic Geothermal Reservoirs in Sedimentary Basins in China: Genesis, Energy Potential and Optimal Exploitation. Proceedings World Geothermal Congress 2015. Melbourne, Australia, 19-25 April.
      Portugal, E., Birkle, P., Barragán R, R. M., et al., 2000. Hydrochemical-Isotopic and Hydrogeological Conceptual Model of the Las Tres Vı́rgenes Geothermal Field, Baja California Sur, México. Journal of Volcanology and Geothermal Research, 101(3/4): 223-244. https://doi.org/10.1016/s0377-0273(99)00195-x
      Qian, J. Z., Zhan, H. B., Wu, Y. F., et al., 2006. Fractured-Karst Spring-Flow Protections: A Case Study in Jinan, China. Hydrogeology Journal, 14(7): 1192-1205. https://doi.org/10.1007/s10040-006-0061-0
      Sui, H. B., Kang, F. X., Li, C. S., et al., 2017. Relationship Between North Ji'nan Geothermal Water and Ji'nan Spring Water Revealed by Hydrogeochemical Characteristics. Carsologica Sinica, 36(1): 49-58 (in Chinese with English abstract).
      Stevanovi, Z., 2019. Karst Waters in Potable Water Supply: A Global Scale Overview. Environmental Earth Sciences, 78(23): 1-15. https://doi.org/10.1007/s12665-019-8670-9
      Sun, Z. Y., Ma, R., Wang, Y. X., et al., 2016. Using Isotopic, Hydrogeochemical-Tracer and Temperature Data to Characterize Recharge and Flow Paths in a Complex Karst Groundwater Flow System in Northern China. Hydrogeology Journal, 24(6): 1393-1412. https://doi.org/10.1007/s10040-016-1390-2
      Tóth, J., 1978. Gravity-Induced Cross-Formational Flow of Formation Fluids, Red Earth Region, Alberta, Canada: Analysis, Patterns, and Evolution. Water Resources Research, 14(5): 805-843. https://doi.org/10.1029/wr014i005p00805
      Tóth, J., 1984. The Role of Regional Gravity Flow in the Chemical and Thermal Evolution of Ground Water. First Canadian/american Conference on Hydrogeology. National Water Well Association and Alberta Research Council, 3-39.
      Tóth, J., 1980. Cross-Formational Gravity-Flow of Groundwater: A Mechanism of the Transport and Accumulation of Petroleum (The Generalized Hydraulic Theory of Petroleum Migration). Problems of Petroleum Migration, 10: 121-167.
      Tóth, J., 2009. Gravitational System of Groundwater Flow. Cambridge University Press, New York, 91-126. https://doi.org/10.1017/CBO9780511576546
      Wang, M. D., Guo, Q. H., Yan, W. D., et al., 2014. Medium-Low Enthalpy Geothermal Power-Electricity Generation at Gonghe Basin, Qinghai Province. Earth Science, 39(9): 1317-1322 (in Chinese with English abstract).
      Wang, Q. B., Duan, X. M., Gao, Z. D., et al., 2007. Regional Groundwater Level Monitoring in Jinan Karstic Spring Basin. Hydrogeology & Engineering Geology, 34(2): 1-7(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2007.02.002
      Wang, Q. B., Duan, X. M., Gao, Z. D., et al., 2009. Groundwater Flow Modelling in the Jinan Karst Spring Area. Hydrogeology & Engineering Geology, 34(5): 53-60(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2009.05.013
      Wang, S. F., Arnaldsson, A., Axelsson, G., et al., 2012. Modelling of the Response of the Niutuozhen Low-Enthalpy Geothermal System in Hebei Province, China. Advanced Materials Research, 512-515: 842-863. https://doi.org/10.4028/www.scientific.net/amr.512-515.842
      Wang, X. W., Wang, T. H., Gao, N. A., et al, 2022. Formation Mechanism and Development Potential of Geothermal Resources Along the Sichuan-Tibet Railway. Earth Science, 47(3): 995-1011(in Chinese with English abstract).
      Xi, D. Y., Shao, Z., Li, X. Z., 1992. Countermeasures for Restoring Spring Water and Protection Spring to Provide Water in Jinan. Geological Society of China Karst and Karst Water In Northern China. Guangxi Normal University Press, Guilin, 72-86.
      Xing, L. T., Kang, F. X., 2007. The Study on the Method of Antipollution Evaluation about Karst Aquifer System. Acta Scientiae Circumstantiae, 27(3): 501-508(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2468.2007.03.023
      Xing, L. T., Wu, Q., Xu, J. X., et al., 2009. Discussion on Environmental Capacity of Ground Water: a Case Study of Ji'Nan Spring Basin, Shandong, China. Geological Bulletin of China, 28(1): 124-129(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.01.015
      Xing, L. T., Zhang, J. Z., Zhou, R., et al., 2008. The Groundwater Environment Capacity in Jinan Springs Basin. China Rural Water and Hydropower, 10: 10-13(in Chinese with English abstract).
      Xu, H. Z., Duan, X. M., Gao, Z. D., 2007. Characteristics of Groundwater Regimes and Affecting Factors near Jinan. Hydrogeology & Engineering Geology, 34(2): 87-89(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2007.02.020
      Xu, X. B., Zhao, L., Wang, K., et al., 2018. Indication from Finite-Frequency Tomography beneath the North China Craton: The Heterogeneity of Craton Destruction. Science China Earth Sciences, 61(9): 1238-1260. https://doi.org/10.1007/s11430-017-9201-y
      Zhu, R. X., Chen, L., Wu, F. Y., et al., 2011. Timing, Scale and Mechanism of the Destruction of the North China Craton. Science China Earth Sciences, 54(6): 789-797. https://doi.org/10.1007/s11430-011-4203-4
      Zhu, R. X., Fan, H. R., Li, J. W., et al., 2015. Decratonic Gold Deposits. Science China Earth Sciences, 58(9): 1523-1537. https://doi.org/10.1007/s11430-015-5139-x
      康凤新, 2011. 地下水资源可持续开采量(博士学位论文). 武汉: 中国地质大学(武汉), 47-48.
      康凤新, 隋海波, 郑婷婷, 2020. 山前岩溶热储聚热与富水机理: 以济南北岩溶热储为例. 地质学报, 94(5): 1606-1624. doi: 10.3969/j.issn.0001-5717.2020.05.018
      李传谟, 1985. 济南岩溶水资源的分析与泉水名胜的保护. 中国岩溶, (1-2): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR1985Z1003.htm
      李传谟, 李岚, 陶卫卫, 2002. 济南保泉供水近期与长远对策. 山东地质, 18(6): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI200206011.htm
      李福林, 马吉刚, 李玉国, 等, 2002. 济南市泉群喷涌的控制性参数计算及供水保泉宏观调控措施研究. 中国岩溶, 21(3): 188-194. doi: 10.3969/j.issn.1001-4810.2002.03.007
      梁杏, 张人权, 靳孟贵, 2015. 地下水水流系统: 理论应用调查. 北京: 地质出版社, 19-19.
      梁永平, 申豪勇, 赵春红, 等, 2021. 对中国北方岩溶水研究方向的思考与实践. 中国岩溶, 40(3): 363-380. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202103001.htm
      梁永平, 王维泰, 2010. 中国北方岩溶水系统划分与系统特征. 地球学报, 31(6): 860-868. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201006017.htm
      梁永平, 王维泰, 赵春红, 等, 2013. 中国北方岩溶水变化特征及其环境问题. 中国岩溶, 32(1): 34-42. doi: 10.3969/j.issn.1001-4810.2013.01.006
      刘国爱, 赵新华, 1997. 济南泉域岩溶水动态特征及有关问题讨论. 山东地质, 12(2): 67-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI199702008.htm
      马腾, 王焰新, 马瑞, 等, 2012. 太原盆地区碳酸盐岩中-低温地热系统演化. 地球科学, 37(2): 229-237. doi: 10.3799/dqkx.2012.023
      隋海波, 康凤新, 李常锁, 等, 2017. 水化学特征揭示的济北地热水与济南泉水关系. 中国岩溶, 36(1): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201701006.htm
      汪新伟, 王婷灏, 高楠安, 等, 2022a. 川藏铁路沿线地热资源形成机理与开发潜力. 地球科学, 47(3): 995-1011.
      汪新伟, 王婷灏, 李海泉, 等, 2022b. 太原盆地岩溶地热系统的形成演化及其地热资源潜力. 中国地质, 49(3): 716-731. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202203004.htm
      王敏黛, 郭清海, 严维德, 等, 2014. 青海共和盆地中低温地热流体发电. 地球科学, 39(9): 1317-1322. doi: 10.3799/dqkx.2014.113
      王庆兵, 段秀铭, 高赞东, 等, 2007. 济南岩溶泉域地下水位监测. 水文地质工程地质, 34(2): 1-7. doi: 10.3969/j.issn.1000-3665.2007.02.002
      王庆兵, 段秀铭, 高赞东, 等, 2009. 济南岩溶泉域地下水流模拟. 水文地质工程地质, 34(5): 53-60. doi: 10.3969/j.issn.1000-3665.2009.05.013
      奚德荫, 邵卓, 李祥芝, 1992. 恢复济南泉水及保泉供水对策. 中国地质学会中国北方岩溶和岩溶水研究. 桂林: 广西师范大学出版社, 72-86.
      邢立亭, 康凤新, 2007. 岩溶含水系统抗污染性能评价方法研究. 环境科学学报, 27(3): 501-508. doi: 10.3321/j.issn:0253-2468.2007.03.023
      邢立亭, 武强, 徐军祥, 等, 2009. 地下水环境容量初探——以济南泉域为例. 地质通报, 28(1): 124-129. doi: 10.3969/j.issn.1671-2552.2009.01.015
      邢立亭, 张建芝, 周瑞, 等, 2008. 济南泉域地下水环境容量研究. 中国农村水利水电, 10: 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200810005.htm
      徐慧珍, 段秀铭, 高赞东, 2007. 济南城近郊区地下水头动态特征及原因分析. 水文地质工程地质, 34(2): 87-89. doi: 10.3969/j.issn.1000-3665.2007.02.020
      徐小兵, 赵亮, 王坤, 等, 2018. 华北克拉通地区有限频体波层析成像——克拉通破坏的空间非均匀性. 中国科学: 地球科学, 48: 1223-1247. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201809008.htm
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(2)

      Article views (669) PDF downloads(95) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return