Citation: | Xiao Yang, Shan Bin, Liu Chengli, Zhou Wanli, 2024. Stress Triggering and Seismic Hazard Assessment of the 2022 Lushan MS6.1 Earthquake. Earth Science, 49(8): 2979-2991. doi: 10.3799/dqkx.2023.053 |
Allen, C. R., Luo, Z. L., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. https://doi.org/10.1130/0016-7606(1991)103<1178:fsoaha>2.3.co;2 doi: 10.1130/0016-7606(1991)103<1178:fsoaha>2.3.co;2
|
Chen, Y. T., Yang, Z. X., Zhang, Y., et al., 2013. From 2008 Wenchuan Earthquake to 2013 Lushan Earthquake. Scientia Sinica Terrae, 43(6): 1064-1072(in Chinese with English abstract). doi: 10.1360/zd-2013-43-6-1064
|
Deng, Q. D., Zhang, P. Z., Ran, Y. K., et al., 2003. Active Tectonics and Seismicity in China. Earth Science Frontiers, 10: 66-73(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.z1.012
|
Fang, L. H., Wu, J. P., Wang, W. L., et al., 2013. Relocation of the Mainshock and Aftershock Sequences of M S7.0 Sichuan Lushan Earthquake. Chinese Science Bulletin, 58(28/29): 3451-3459(in Chinese with English abstract).
|
Feng, Y. S., Xiong, X., Shan, B., et al., 2022. Coulomb Stress Changes Due to the 2021 MS7.4 Maduo Earthquake and Expected Seismicity Rate Changes in the Surroundings. Science China Earth Sciences, 65(4): 675-686(in Chinese with English abstract). doi: 10.1007/s11430-021-9882-8
|
Gong, M., Xu, X. W., Li, K., 2020. Fault Geometry Responsible for the Initial Rupture Process of Wenchuan Earthquake. Chinese Journal of Geophysics, 63(3): 1224-1234(in Chinese with English abstract).
|
Harris, R. A., Simpson, R. W., 1998. Suppression of Large Earthquakes by Stress Shadows: A Comparison of Coulomb and Rate‐and‐State Failure. Journal of Geophysical Research: Solid Earth, 103(B10): 24439-24451. https://doi.org/10.1029/98jb00793
|
Huang, L. Y., Cheng, H. H., Zhang, H., et al., 2019. Coseismic and Postseismic Stress Evolution Caused by the 2008 Wenchuan Earthquake and Its Effects on the 2017 MS 7.0 Jiuzhaigou Earthquake. Chinese J. Geophys. , 62(4): 1268-1281(in Chinese with English abstract).
|
Huang, M. H., Bürgmann, R., Freed, A. M., 2014. Probing the Lithospheric Rheology across the Eastern Margin of the Tibetan Plateau. Earth and Planetary Science Letters, 396(8): 88-96. https://doi.org/10.1016/j.epsl.2014.04.003
|
Jia, K., Zhou, S., Wang, R., 2012. Stress Interactions within the Strong Earthquake Sequence from 2001 to 2010 in the Bayankala Block of Eastern Tibet. Bulletin of the Seismological Society of America, 102(5): 2157-2164. https://doi.org/10.1785/0120110333
|
Jia, K., Zhou, S. Y., Zhuang, J. C., et al., 2018. Did the 2008 Mw 7.9 Wenchuan Earthquake Trigger the Occurrence of the 2017 Mw 6.5 Jiuzhaigou Earthquake in Sichuan, China?. Journal of Geophysical Research: Solid Earth, 123(4): 2965-2983. https://doi.org/10.1002/2017jb015165
|
Jia, K., Zhou, S., Zhuang, J., et al., 2014. Possibility of the Independence between the 2013 Lushan Earthquake and the 2008 Wenchuan Earthquake on Longmen Shan Fault, Sichuan, China. Seismological Research Letters, 85(1): 60-67. https://doi.org/10.1785/0220130115
|
Jin, Z. T., Wan, Y. G., Liu, Z. C., et al., 2019. The Static Stress Triggering Influences of the 2017 MS7.0 Jiuzhaigou Earthquake on Neighboring Areas. Chinese J. Geophys. , 62(4): 1282-1299(in Chinese with English abstract).
|
King, G. C. P., Hubert-Ferrari, A., Nalbant, S. S., et al., 2001. Coulomb Interactions and the 17 August 1999 Izmit, Turkey Earthquake. Comptes Rendus de l'Académie des Science-Series IIA-Earth and Planetary Science, 333(9): 557-569. https://doi.org/10.1016/s1251-8050(01)01676-7
|
King, G. C. P., Stein, R. S., Lin, J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America, 84(3): 935-953.160(in Chinese with English abstract).
|
Li, B., Xie, F. R., Huang, J. S., et al., 2022. In Situ Stress State and Seismic Hazard in the Dayi Seismic Gap of the Longmenshan Thrust Belt. Science China Earth Sciences, 65(7): 1388-1398(in Chinese with English abstract). doi: 10.1007/s11430-021-9915-4
|
Li, P. E., Liao, L., Feng, J. Z., 2022. Relationship between Stress Evolution and Aftershocks after Changning M 6.0 Earthquake in Sichuan on 17 June, 2019. Earth Science, 47(6): 2149-2164(in Chinese with English abstract).
|
Li, Z. W., Ni, S. D., Hao, T. Y., et al., 2012. Uppermost Mantle Structure of the Eastern Margin of the Tibetan Plateau from Interstation Pn Traveltime Difference Tomography. Earth and Planetary Science Letters, 335-336(3): 195-205. https://doi.org/10.1016/j.epsl.2012.05.005
|
Liang, C. T., Huang, Y. L., Wang, C. L., et al., 2018. Progress in the Studies of the Seismic Gap between the 2008 Wenchuan and 2013 Lushan Earthquakes. Chinese J. Geophys. , 61(5): 1996-2010(in Chinese with English abstract).
|
Liu, C., Zhu, B. J., Shi, Y. L., 2020. Do the Two Seismic Gaps in the Southwestern Section of the Longmen Shan Fault Present the Same Seismic Hazard?. Journal of Geophysical Research: Solid Earth, 125(3): 1-15. https://doi.org/10.1029/2019jb018160
|
Liu, C. L., Zheng, Y., Ge, C., et al., 2013. Rupture Process of the M S7.0 Lushan Earthquake, 2013. Science China Earth Sciences, 56(7): 1187-1192(in Chinese with English abstract).
|
Lu, R. Q., Fang, L. H., Guo, Z., et al., 2022. Detailed Structural Characteristics of the 1 June 2022 MS 6.1 Sichuan Lushan Strong Earthquake. Chinese Journal of Geophysics, 65(11): 4299-4310(in Chinese with English abstract). doi: 10.6038/cjg2022Q0438
|
Luo, Y., Zhao, L., Tian, J. H., 2019. Spatial and Temporal Variations of Stress Field in the Longmenshan Fault Zone after the 2008 Wenchuan, China Earthquake. Tectonophysics, 767(2): 228172. https://doi.org/10.1016/j.tecto.2019.228172
|
Pei, S. P., Zhang, H. J., Su, J. R., et al., 2014. Ductile Gap between the Wenchuan and Lushan Earthquakes Revealed from the Two-Dimensional Pg Seismic Tomography. Scientific Reports, 4(1): 1-15. https://doi.org/10.1038/srep06489
|
Pope, N., Mooney, W. D., 2020. Coulomb Stress Models for the 2019 Ridgecrest, California Earthquake Sequence. Tectonophysics, 791: 228555. https://doi.org/10.1016/j.tecto.2020.228555
|
Wang, Q., Qiao, X. J., Lan, Q. G., et al., 2011. Rupture of Deep Faults in the 2008 Wenchuan Earthquake and Uplift of the Longmen Shan. Nature Geoscience, 4(9): 634-640. https://doi.org/10.1038/ngeo1210
|
Scholz, C. H., Cowie, P. A., 1990. Determination of Total Strain from Faulting Using Slip Measurements. Nature, 346(6287): 837-839. https://doi.org/10.1038/346837a0
|
Shan, B., Xiong, X., Zheng, Y., et al., 2008. Stress Changes on Major Faults Caused by M W7.9 Wenchuan Earthquake, may 12, 2008. Science in China Series D: Earth Sciences, 52(5): 593-601(in Chinese with English abstract).
|
Shan, B., Xiong, X., Zheng, Y., et al., 2013. Stress Changes on Major Faults Caused by 2013 Lushan Earthquake and its Relationship with 2008 Wenchuan Earthquake. Science China Earth Sciences, 56(7): 1169-1176. https://doi.org/10.1007/s11430-013-4642-1
|
Shan, B., Zheng, Y., Liu, C. L., et al., 2017. Coseismic Coulomb Failure Stress Changes Caused by the 2017 M7.0 Jiuzhaigou Earthquake, and its Relationship with the 2008 Wenchuan Earthquake. Science China Earth Sciences, 60(12): 2181-2189(in Chinese with English abstract). doi: 10.1007/s11430-017-9125-2
|
Shao, Y. X., Zou, X. B., Yuan, D. Y., et al., 2021. Late Quaternary Slip along Yangguan Fault at Northeastern Section of Altyn Tagh Fault and Implications for Seismic Risk. Earth Science, 46(2): 683-696(in Chinese with English abstract).
|
Shao, Z. G., Wang, R. J., Wu, Y. Q., et al., 2011. Rapid Afterslip and Short-Term Viscoelastic Relaxation Following the 2008 MW7.9 Wenchuan Earthquake. Earthquake Science, 24(2): 163-175. https://doi.org/10.1007/s11589-010-0781-z
|
Shao, Z. G., Zhou, L. Q., Jiang, C. S., et al., 2010. The Impact of Wenchuan MS8.0 Earthquake on the Seismic Activity of Surrounding Faults. Chinese J. Geophys. , 53(8): 1784-1795(in Chinese with English abstract).
|
Stein, R. S., 1999. The Role of Stress Transfer in Earthquake Occurrence. Nature, 402(6762): 605-609. https://doi.org/10.1038/45144
|
Toda, S., Stein, R. S., Richards-Dinger, K., et al., 2005. Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer. Journal of Geophysical Research: Solid Earth, 110(B5): 1-15. https://doi.org/10.1029/2004jb003415
|
Wan, Y. G., Shen, Z. K., Sheng, Z. S., et al., 2009. The Influence of 2008 Wenchuan Earthquake on Surrounding Faults. Acta Seismologica Sinica, 31(2): 128-139(in Chinese with English abstract). doi: 10.3321/j.issn:0253-3782.2009.02.002
|
Wang, C. Y., Han, W. B., Wu, J. P., et al., 2003. Crustal Structure beneath the Songpan: Garze Orogenic Belt. Acta Seismologica Sinica, 16(3): 237-250(in Chinese with English abstract). doi: 10.1007/s11589-003-0028-3
|
Wang, J., Zhang, G. W., Li, C. F., et al., 2018. Correlating Seismicity to Curie-Point Depths in the Eastern Margin of the Tibetan Plateau. Chinese J. Geophys. , 61(5): 1840-1852(in Chinese with English abstract).
|
Wang, R. J., Lorenzo-Martín, F., Roth, F., 2006. PSGRN/PSCMP: a New Code for Calculating Co- And Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory. Computers & Geosciences, 32(4): 527-541. https://doi.org/10.1016/j.cageo.2005.08.006
|
Wang, X. S., Lu, J., Xie, Z. J., et al., 2015. Focal Mechanisms and Tectonic Stress Field in the North-South Seismic Belt of China. Chinese Journal of Geophysics, 58(11): 4149-4162(in Chinese with English abstract). doi: 10.6038/cjg20151122
|
Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
|
Wessel, P., Smith, W. H. F., 1998. New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47): 579-579. https://doi.org/10.1029/98eo00426
|
Wu, J., Yao, D. D., Meng, X. F., et al., 2017. Spatial‐temporal Evolutions of Early Aftershocks Following the 2013 Mw 6.6 Lushan Earthquake in Sichuan, China. Journal of Geophysical Research: Solid Earth, 122(4): 2873-2889. https://doi.org/10.1002/2016jb013706
|
Xiong, X., Shan, B., Zheng, Y., et al., 2010. Stress Transfer and Its Implication for Earthquake Hazard on the Kunlun Fault, Tibet. Tectonophysics, 482
|
Xu, C. J., Liu, Y., Wen, Y. M., 2009. Mw 7.9 Wenchuan Earthquake Slip Distribution Inversion from GPS Measurements. Acta Geodaetica et Cartographica Sinica, 38(3): 195-201(in Chinese with English abstract). doi: 10.3321/j.issn:1001-1595.2009.03.002
|
Xu, X. W., Wen, X. Z., Han, Z. J., et al., 2013. Lushan M S7.0 Earthquake: A Blind Reserve-Fault Event. Chinese Science Bulletin, 58(28/29): 3437-3443(in Chinese with English abstract).
|
Zhang, C. J., Cao, J. L., Shi, Y. L., 2009. Studying the Viscosity of Lower Crust of Qinghai-Tibet Plateau According to Post-Seismic Deformation. Science in China Series D: Earth Sciences, 52(3): 411-419(in Chinese with English abstract). doi: 10.1007/s11430-009-0028-9
|
Zhao, J., Ren, J. W., Jiang, Z. S., et al., 2018. Fault Locking and Deformation Characteristics in Southwestern Segment of the Longmenshan Fault. J. Seismol. Res. , 41: 216-225(in Chinese with English abstract).
|
Zhao, J., Wu, Y. Q., Jiang, Z. S., et al., 2013. Fault Locking and Dynamic Deformation of the Longmenshan Fault Zone before the 2013 Lushan MS 7.0 Earthquake. Acta Seismologica Sinica, 35(5): 681-691(in Chinese with English abstract). doi: 10.3969/j.issn.0253-3782.2013.05.007
|
Zheng, Y., Ma, H. S., Lü, J., et al., 2009. Source Mechanism of Strong Aftershocks (MS⩾5.6) of the 2008/05/12 Wenchuan Earthquake and the Implication for Seismotectonics. Science in China Series D: Earth Sciences, 52(6): 739-753. https://doi.org/10.1007/s11430-009-0074-3
|
Zhou, S. Y., 2008. Seismicity Simulation in Western Sichuan of China Based on the Fault Interaction Sand Its Implication on the Estimation of the Regional Earthquake Risk. Chinese Journal of Geophysics, 51(1): 165-174(in Chinese with English abstract).
|
陈运泰, 杨智娴, 张勇, 等, 2013. 从汶川地震到芦山地震. 中国科学: 地球科学, 43(6): 1064-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306015.htm
|
邓起东, 张培震, 冉勇康, 等, 2003. 中国活动构造与地震活动. 地学前缘, 10: 66-73 doi: 10.3321/j.issn:1005-2321.2003.z1.012
|
房立华, 吴建平, 王未来, 等, 2013. 四川芦山Ms7.0级地震及其余震序列重定位. 科学通报, 58(20): 1901-1909. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320004.htm
|
冯雅杉, 熊熊, 单斌, 等, 2022. 2021年玛多MS7.4地震导致的周边地区库仑应力加载及地震活动性变化. 中国科学: 地球科学, 52(6): 1100-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202206010.htm
|
宫猛, 徐锡伟, 李康, 2020. 汶川MW7.9地震起始破裂断层几何结构. 地球物理学报, 63(3): 1224-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202003038.htm
|
黄禄渊, 程惠红, 张怀, 等, 2019. 2008年汶川地震同震-震后应力演化及其对2017年九寨沟MS 7.0地震的影响. 地球物理学报, 62(4): 1268-1281. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202101012.htm
|
靳志同, 万永革, 刘兆才, 等, 2019. 2017年九寨沟MS 7.0地震对周围地区的静态应力影响. 地球物理学报, 62(4): 1282-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201912009.htm
|
李兵, 谢富仁, 黄金水, 等, 2022. 龙门山断裂带大邑地震空区地应力状态与地震危险性. 中国科学: 地球科学, https://doi.org/10.1360/SSTe-2021-0280
|
李平恩, 廖力, 奉建州, 2022. 2019年6月17日四川长宁6.0级地震震后应力演化与余震关系. 地球科学, 47(6): 2149-2164. doi: 10.3799/dqkx.2021.143
|
梁春涛, 黄焱羚, 王朝亮, 等, 2018. 汶川和芦山地震之间地震空区综合研究进展. 地球物理学报, 61(5): 1996-2010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805026.htm
|
刘成利, 郑勇, 葛粲, 等, 2013. 2013年芦山7.0级地震的动态破裂过程. 中国科学: 地球科学, 43(06): 1020-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306010.htm
|
鲁人齐, 房立华, 郭志, 等, 2022. 2022年6月1日四川芦山MS 6.1强震构造精细特征. 地球物理学报, 65(11): 4299-4310. doi: 10.6038/cjg2022Q0438
|
单斌, 熊熊, 郑勇, 等, 2009. 2008年5月12日MW7.9汶川地震导致的周边断层应力变化. 中国科学: D辑, (5): 537-545. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200905001.htm
|
单斌, 熊熊, 郑勇, 等, 2013. 2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系. 中国科学: 地球科学, 43(6): 1002-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306008.htm
|
单斌, 郑勇, 刘成利, 等, 2017. 2017年M7.0级九寨沟地震同震库仑应力变化及其与2008年汶川地震的关系. 中国科学: 地球科学, 47(11): 1329-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201711005.htm
|
邵延秀, 邹小波, 袁道阳, 等, 2021. 阿尔金断裂东北段敦煌阳关断裂晚第四纪活动性及其强震危险性影响分析. 地球科学, 46(2): 683-696. doi: 10.3799/dqkx.2020.082
|
邵志刚, 周龙泉, 蒋长胜, 等, 2010. 2008年汶川MS8.0地震对周边断层地震活动的影响. 地球物理学报, 2010, 53(8): 1784-1795. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201008005.htm
|
万永革, 沈正康, 盛书中, 等, 2009. 2008年汶川大地震对周围断层的影响. 地震学报, 31(2): 128-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200902002.htm
|
王椿镛, 韩渭宾, 吴建平, 等, 2003. 松潘-甘孜造山带地壳速度结构. 地震学报, 25(3): 229-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200303000.htm
|
王健, 张广伟, 李春峰, 等, 2018. 青藏高原东缘地震活动与居里点深度之间的相关性. 地球物理学报, 61(5): 1840-1852. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805014.htm
|
王晓山, 吕坚, 谢祖军, 等, 2015. 南北地震带震源机制解与构造应力场特征. 地球物理学报, 58(11): 4149-4162. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511023.htm
|
许才军, 刘洋, 温扬茂, 2009. 利用GPS资料反演汶川MW7.9级地震滑动分布. 测绘学报, 38(3). https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200903002.htm
|
徐锡伟, 闻学泽, 韩竹军, 等, 2013. 四川芦山7.0级强震: 一次典型的盲逆断层型地震. 科学通报, 58(20): 1887-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320002.htm
|
张晁军, 曹建玲, 石耀霖, 2008. 从震后形变探讨青藏高原下地壳黏滞系数. 中国科学: D辑, 38(10): 1250-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810009.htm
|
赵静, 任金卫, 江在森, 等, 2018. 龙门山断裂带西南段闭锁与变形特征. 地震研究, 41(2): 216-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201802009.htm
|
赵静, 武艳强, 江在森, 等, 2013. 芦山地震前龙门山断裂带闭锁程度与变形动态特征研究. 地震学报, 35(5): 681-691. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201305007.htm
|
郑勇, 马宏生, 吕坚, 等, 2009. 汶川地震强余震(MS≥ 5.6) 的震源机制解及其与发震构造的关系. 中国科学: D辑, (4): 413-426. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXG202310014.htm
|
周仕勇, 2008. 川西及邻近地区地震活动性模拟和断层间相互作用研究. 地球物理学报, 51(1): 165-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200801022.htm
|