Citation: | Yang Liang, Wang Yang, Zhang Quan, Gao feng, Xiao Lan, 2024. A Theoretical Model about the Runout Distance of Bedding Rock Landslide under Excavation Uploading. Earth Science, 49(8): 2851-2861. doi: 10.3799/dqkx.2023.054 |
Cheng, Y. G., Wang, Y. F., 2013. Numerical Simulation Analysis on Relaxation and Stability of the Cutting Bedding Slope. Chinese Journal of Underground Space and Engineering, 4: 848-853(in Chinese with English abstract).
|
Dai, X. R., Zhao, J. J., Lai, Q. Y., et al., 2022. Movement Process and Formation Mechanism of Rock Avalanche in Chada, Tibet Plateau. Earth Science, 47(6): 1932-1944(in Chinese with English abstract).
|
Feng, J., Zhou, D. P., Jiang. N., et al., 2007. On the Extent of Bedding Slipping Rock Mass of Consequent Rock Slope. Journal of Mountain Science, 3: 376-380(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2007.03.018
|
Fan, X. M., An, J. R., Rossiter, D. G., et al., 2014. Empirical Prediction of Coseismic Landslide Dam Formation. Earth Surface Processes and Landforms, 39(14): 1913-1926. https://doi.org/10.1002/esp.3585
|
Guo, D. P., Hamada, M., He, C., et al., 2014. An Empirical Model for Landslide Travel Distance Prediction in Wenchuan Earthquake Area. Landslides, 11(2): 281-291. https://doi.org/10.1007/s10346-013-0444-y
|
Ge, Y, F., Tang H, M., Li, Wei., et al, 2016. Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Structure. Earth Science, 41(9): 1583-1592 (in Chinese with English abstract).
|
Huang, R. Q., Liu, W. H., 2008. Study on the Movement Characteristics of Rolling Rock Blocks on Platform. Advances in Earth Science, (5): 517-523 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2008.05.012
|
He, S. M., Liu, W., Wang, J., 2015. Dynamic Simulation of Landslide Based on Thermo-Poro-Elastic Approach. Computers & Geosciences, 75(10): 24-32. https://doi.org/10.1016/j.cageo.2014.10.013
|
Huang, Y., Li, G. Y., Xiong, M., 2020. Stochastic Assessment of Slope Failure Run-Out Triggered by Earthquake Ground Motion. Natural Hazards, 101(1): 87-102. https://doi.org/10.1007/s11069-020-03863-7
|
Jiang, P., Chen, J. J., 2016. Displacement Prediction of Landslide Based on Generalized Regression Neural Networks with K-Fold Cross-Validation. Neurocomputing, 198(4): 40-47. https://doi.org/10.1016/j.neucom.2015.08.118
|
Liu, Y., Xu, C., Huang, B., et al., 2020. Landslide Displacement Prediction Based on Multi-Source Data Fusion and Sensitivity States. Engineering Geology, 271(1-2): 105608. https://doi.org/10.1016/j.enggeo.2020.105608
|
Li, X. P., Tang, X., Zhao, S. X., et al., 2021. MPM Evaluation of the Dynamic Runout Process of the Giant Daguangbao Landslide. Landslides, 18(4): 1509-1518. https://doi.org/10.1007/s10346-020-01569-2
|
Li, D. J., Jia, W. T., Cheng, X., et al., 2022. Stability of Stepped Sliding of Bedding Rock Slope with Discontinuous Joints. Chinese Journal of Geotechnical Engineering, 1-10 (in Chinese with English abstract).
|
Liu, L. L., Zhang, P., Zhang, S. H., et al., 2022. Efficient Evaluation of Run-Out Distance of Slope Failure under Excavation. Engineering Geology, 306(12): 106751. https://doi.org/10.1016/j.enggeo.2022.106751
|
Mu, C. L., 2017. Study on Deformation Instability Evolution Mechanism and Prediction During Excavating Process of Bedded Rock Slope: A Case of Slope as the Studied Object in the Gasoline Construction Site(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
|
Mitchell, A., McDougall, S., Nolde, N., et al., 2020. Rock Avalanche Runout Prediction Using Stochastic Analysis of a Regional Dataset. Landslides, 17(4): 777-792. https://doi.org/10.1007/s10346-019-01331-3
|
Sun, Y., Yang, J., Song, E., 2015. Runout Analysis of Landslides Using Material Point Method. IOP Conference Series: Earth and Environmental Science, 26: 012014. https://doi.org/10.1088/1755-1315/26/1/012014
|
Scaringi, G., Fan, X. M., Xu, Q., et al., 2018. Some Considerations on the Use of Numerical Methods to Simulate Past Landslides and Possible New Failures: The Case of the Recent Xinmo Landslide (Sichuan, China). Landslides, 15(7): 1359-1375. https://doi.org/10.1007/s10346-018-0953-9
|
Su, X., Wei, W. H., Ye, W. L., et al., 2019. Predicting Landslide Sliding Distance Based on Energy Dissipation and Mass Point Kinematics. Natural Hazards, 96(3): 1367-1385. https://doi.org/10.1007/s11069-019-03618-z
|
Shi, J. J., Zhang, W., Wang, B., et al., 2020. Simulation of a Submarine Landslide Using the Coupled Material Point Method. Mathematical Problems in Engineering, 2020(c1): 1-14. https://doi.org/10.1155/2020/4392581
|
Takahashi, T., 1981. Estimation of Potential Debris Flows and Their Hazardous Zones: Soft Countermeasures for a Disaster. Natural Disaster Science, 3(1): 57-89.
|
Tang, G. C., Tang, Q. Y., Hou, J. W., 2013. Research on Instability Mechanism and Reinforcement Measures of a Low-Angle Rock Bedding Landslide. China Survey and Design, 6: 90-94(in Chinese with English abstract).
|
Tang, R., Xu, Q., Wu, B., et al. 2017. Method of Sliding Distance Calculation for Translational Landslides. Rock and Soil Mechanics, 39(3): 1009-1019+1070(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202407017.htm
|
Tang, C. H., Yu, X. L., Cai, B., et al., 2021. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 46(11): 4033-4042(in Chinese with English abstract).
|
Wang, Z. D., Xia, Y. Y., Xia, G. B., et al., 2015. Upper Bound Limit Analysis Method for Stability Analysis of Bedding Rock Slopes. Rock and Soil Mechanics, 2: 576-583(in Chinese with English abstract). .
|
Wang J Y, Li L, Zheng D G, et al. 2018. Characteristics of Apparent Dip Slide and Movement Process of the "8.12" Shanyang Rockslide. Journa lof Catastrophology, 33(1): 111-116(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NZYJ202311084.htm
|
Yu, X., Gong, B., Tang, C., 2021. Study of the Slope Deformation Characteristics and Landslide Mechanisms under Alternating Excavation and Rainfall Disturbance. Bulletin of Engineering Geology and the Environment, 80(9): 7171-7191. https://doi.org/10.1007/s10064-021-02371-7
|
Zhang, Y. H., Zhang, M. X., Cheng, Q., 2017. Kinematics Analysis for Calculating Distance ofRockfalls on Typical Loose Media Slope. Journal of Shanghai University(Natural Science), 23(6): 949-960(in Chinese with English abstract).
|
Zhang, J. C., Wang, Z. F., Wei, Z. F., et al., 2019. Analysis of Apparent Tendency Instability Mechanism of Bedding: A Case Study of Yishizha Landslide in Guide Rock Slope. Journal of Qinghai University, 5: 52-57(in Chinese with English abstract).
|
Zhang, Z. L., Zeng, R. Q., Meng, X. M., et al., 2021. Estimating Landslide Sliding Distance Based on an Improved Heim Sled Model. CATENA, 204(2): 105401. https://doi.org/10.1016/j.catena.2021.105401
|
Zhang, C. Y., Yin, Y. P., Yan, H., et al., 2022. Centrifuge Modeling of Multi-Row Stabilizing Piles Reinforced Reservoir Landslide with Different Row Spacings. Landslides, 20(3): 559-577. https://doi.org/10.1007/s10346-022-01994-5
|
Zhou, C., Cao, Y., Yin, K. L., et al., 2022. Characteristic Comparison of Seepage-Driven and Buoyancy-Driven Landslides in Three Gorges Reservoir Area, China. Engineering Geology, 301(4): 106590. https://doi.org/10.1016/j.enggeo.2022.106590
|
成永刚, 王玉峰, 2013. 顺层挖方边坡松弛区及稳定性数值模拟分析. 地下空间与工程学报, 4: 848-853. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201304024.htm
|
代欣然, 赵建军, 赖琪毅, 等, 2022. 青藏高原察达高速远程滑坡运动过程与形成机理. 地球科学, 47(6): 1932-1944. doi: 10.3799/dqkx.2021.205
|
冯君, 周德培, 江南, 等, 2007. 顺层岩质边坡顺层滑动岩体范围分析. 山地学报, 3: 376-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200703017.htm
|
葛云峰, 唐辉明, 李伟, 等, 2016. 基于岩体结构特征的高速远程滑坡致灾范围评价. 地球科学, 41(9): 1583-1592. doi: 10.3799/dqkx.2016.117
|
黄润秋, 刘卫华, 2008. 滚石在平台上的运动特征分析. 地球科学进展, (5): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200805014.htm
|
李德建, 贾文韬, 程肖, 等, 2022. 阶梯状滑动断续节理顺层边坡稳定性分析. 岩土工程学报, 1-10.
|
穆成林, 2017. 顺层岩质高边坡开挖过程变形失稳演化机制及预测评价研究(博士毕业论文). 成都: 成都理工大学.
|
唐耿琛, 唐秋元, 侯俊伟, 2013. 缓倾角顺层滑坡失稳机制及加固措施研究. 中国勘察设计, 6: 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-KCSJ201306030.htm
|
唐然, 许强, 吴斌, 等, 2018. 平推式滑坡运动距离计算模型. 岩土力学39(3): 1009-1019+1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803030.htm
|
唐朝晖, 余小龙, 柴波, 等, 2021. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 46(11): 4033-4042. doi: 10.3799/dqkx.2019.960
|
王智德, 夏元友, 夏国邦, 等, 2015. 顺层岩质滑坡稳定性极限分析上限法. 岩土力学, 02: 576-583.
|
王佳运, 李林, 郑定国, 等, 2018. "8. 12" 山阳滑坡视向滑动特征与运动过程. 灾害学, 33 (1): 111-116.
|
张亚辉, 张孟喜, 陈强, 等, 2017. 典型松散体边坡滚石运动距离的运动学分析. 上海大学学报(自然科学版), 23(6): 949-960. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201706016.htm
|
张俊才, 王仲复, 魏正发, 等, 2019. 层岩质斜坡视倾向失稳机制分析——以贵德亦什扎滑坡为例. 青海大学学报, 5: 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXZ201905009.htm
|