• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 11
    Nov.  2024
    Turn off MathJax
    Article Contents
    Zhang Yan, Chen Guoxing, Zhao Kai, Fang Yi, Peng Yanjü, 2024. Non-Stationary Random Field Simulation Method of Seabed Site Shear Wave Velocity Structures Considering Stratigraphy Variation and Nonlinear Trend. Earth Science, 49(11): 4225-4237. doi: 10.3799/dqkx.2023.055
    Citation: Zhang Yan, Chen Guoxing, Zhao Kai, Fang Yi, Peng Yanjü, 2024. Non-Stationary Random Field Simulation Method of Seabed Site Shear Wave Velocity Structures Considering Stratigraphy Variation and Nonlinear Trend. Earth Science, 49(11): 4225-4237. doi: 10.3799/dqkx.2023.055

    Non-Stationary Random Field Simulation Method of Seabed Site Shear Wave Velocity Structures Considering Stratigraphy Variation and Nonlinear Trend

    doi: 10.3799/dqkx.2023.055
    • Received Date: 2023-02-21
    • Publish Date: 2024-11-25
    • The spatial variabilities of stratigraphy and S-wave velocity (Vs) structures have significant influence on the results of seismic site response analyses. Based on the borehole data of the seabed of Bohai Bay, the embedded Markov chain model, which has a wider simulation range for random stratigraphy and smoother simulation effect for stratigraphic boundary than the coupled Markov chain, is used to simulate the variabilities of random stratigraphy with depth less than the borehole bottoms, and the simulation results have higher precision. The point estimation method is used to give the change of the means and standard deviations of Vs with h of the seabed when describing the variation trend of Vs with h by power function and linear function. Based on the measured Vs-profiles at the boreholes, the spatial variabilities of random Vs-structures are simulated by using the non-stationary conditional random field method. It is found that considering the spatial variabilities of the random stratigraphy and ignoring the nonlinear variation of Vs along h can significantly increase the standard deviations of the simulated random Vs- structures. The correlations and transfer probabilities between the unknown stratigraphy below the seabed borehole bottoms and the known stratigraphy at the same depth of near-shore land are established using the membership function and fuzzy Markov chain model, the possible spatial variabilities of random seabed stratigraphy and Vs-structures below the borehole bottoms are obtained. It provides reasonable random stratigraphy and Vs-structures for seismic response analysis of offshore engineering site.

       

    • loading
    • Carle, S. F., Fogg, G. E., 1997. Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29(7): 891-918. https://doi.org/10.1023/A: 1022303706942 doi: 10.1023/A:1022303706942
      Carle, S. F., Fogg, G. E., 2020. Integration of Soft Data into Geostatistical Simulation of Categorical Variables. Frontiers in Earth Science, 8: 565707. https://doi.org/10.3389/feart.2020.565707
      Chen, G. X., Zhu, J., Qiang, M. Y., et al., 2018. Three-Dimensional Site Characterization with Borehole Data-A Case Study of Suzhou Area. Engineering Geology, 234: 65-82. https://doi.org/10.1016/j.enggeo.2017.12.019
      Chen, Z. S., Yuan, X. M., Sun, R., et al., 2019. Impact of Uncertainty in In-Situ Shear-Wave Velocity on the Judgement of Site Stiffness. Rock and Soil Mechanics, 40(7): 2748-2754, 2798 (in Chinese with English abstract).
      Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent, Manage and Prewarn Catastrophic Risk? Earth Science, 47(10) : 3897-3899 (in Chinese with English abstract).
      Deng, Z. P., Li, D. Q., Qi, X. H., et al., 2018. Simulation of Geological Uncertainty Using Modified Generalized Coupled Markov Chain. Chinese Journal of Geotechnical Engineering, 40(11): 2041-2050 (in Chinese with English abstract). doi: 10.11779/CJGE201811010
      Elfeki, A., Dekking, M. A., 2001. Markov Chain Model for Subsurface Characterization: Theory and Applications. Mathematical Geology, 33(5): 569-589. doi: 10.1023/A:1011044812133
      Gong, W. P., Juang, C. H., Martin, J. R., et al., 2018. Probabilistic Analysis of Tunnel Longitudinal Performance Based upon Conditional Random Field Simulation of Soil Properties. Tunnelling and Underground Space Technology, 73: 1-14. https://doi.org/10.1016/j.tust.2017.11.026
      Gong, W. P., Zhao, C., Juang, C. H., et al., 2021. Coupled Characterization of Stratigraphic and Geo-Properties Uncertainties-A Conditional Random Field Approach. Engineering Geology, 294: 106348. https://doi.org/10.1016/j.enggeo.2021.106348
      Griffiths, D. V., Yu, X., 2015. Another Look at the Stability of Slopes with Linearly Increasing Undrained Strength. Géotechnique, 65(10): 824-830. https://doi.org/10.1680/geot.14.t.030
      Hoffman, Y., 2008. Gaussian Fields and Constrained Simulations of the Large-Scale Structure. Lecture Notes in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg: 565-583. https://doi.org/10.1007/978-3-540-44767-2_17
      Jiang, S. H., Huang, J. S., 2018. Modeling of Non-Stationary Random Field of Undrained Shear Strength of Soil for Slope Reliability Analysis. Soils and Foundations, 58(1): 185-198. https://doi.org/10.1016/j.sandf.2017.11.006
      Li, J. H., Cai, Y. M., Li, X. Y., et al., 2019. Simulating Realistic Geological Stratigraphy Using Direction-Dependent Coupled Markov Chain Model. Computers and Geotechnics, 115: 103147. https://doi.org/10.1016/j.compgeo.2019.103147
      Li, Z., Wang, X. R., Wang, H., et al., 2016. Quantifying Stratigraphic Uncertainties by Stochastic Simulation Techniques Based on Markov Random Field. Engineering Geology, 201: 106-122. https://doi.org/10.1016/j.enggeo.2015.12.017
      Phoon, K. K., Cao, Z. J., Ji, J., et al., 2022. Geotechnical Uncertainty, Modeling, and Decision Making. Soils and Foundations, 62(5): 101189. https://doi.org/10.1016/j.sandf.2022.101189
      Qi, X. H., Li, D. Q., Cao, Z. J., et al., 2017. Uncertainty Analysis of Slope Stability Considering Geological Uncertainty. Rock and Soil Mechanics, 38(5): 1385-1396 (in Chinese with English abstract).
      Qi, X. H., Li, D. Q., Phoon, K. K., et al., 2016. Simulation of Geologic Uncertainty Using Coupled Markov Chain. Engineering Geology, 207: 129-140. https://doi.org/10.1016/j.enggeo.2016.04.017
      Qin, Y. S., 1985. Geology of the Bohai Sea. Science Press, Beijing (in Chinese with English abstract).
      Sun, Q., 2019. Improvement and Application of Groundwater Flow Stochastic Simulation Method Based on TPOGS (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Zhang, W. G., Wang, Q., Chen, F. Y., et al., 2021. Reliability Analysis of Slope and Random Response of Anti-Sliding Pile Considering Spatial Variability of Rock Mass Properties. Rock and Soil Mechanics, 42(11): 3157-3168 (in Chinese with English abstract).
      Zhang, W. L., Deng, L., Pang, Y. T., et al., 2022. CIHA Method for Rapid and Accurate Vulnerability Analysis of Embankment Dams under Strong Earthquakes. Earth Science, 47(12): 4390-4400 (in Chinese with English abstract).
      Zhang, Y., Chen, G. X., Zhao, K., et al., 2023. Uncertainties of Shear Modulus Reduction and Damping Ration Curves of Marine Soils. Engineering Mechanics, 40(5): 161-171 (in Chinese with English abstract).
      Zhao, F., Yu, S. B., Li, B., et al., 2022. Research Advances on Large-Scale Shaking Table Test for Rock Slopes under Earthquake. Earth Science, 47(12): 4498-4512 (in Chinese with English abstract).
      Zhu, J., Chen, G. X., Xu, H. G., 2015. Effect of Seismic Bedrock Interface Depth on Surface Motion Parameters of Deep Site. Chinese Journal of Geotechnical Engineering, 37(11): 2079-2087 (in Chinese with English abstract). doi: 10.11779/CJGE201511020
      陈卓识, 袁晓铭, 孙锐, 等, 2019. 土层剪切波速不确定性对场地刚性判断的影响. 岩土力学, 40(7): 2748-2754, 2798.
      崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险? 地球科学, 47(10): 3897-3899. doi: 10.3799/dqkx.2022.855
      邓志平, 李典庆, 祁小辉, 等, 2018. 基于广义耦合马尔可夫链的地层变异性模拟方法. 岩土工程学报, 40(11): 2041-2050. doi: 10.11779/CJGE201811010
      祁小辉, 李典庆, 曹子君, 等, 2017. 考虑地层变异的边坡稳定不确定性分析. 岩土力学, 38(5): 1385-1396.
      秦蕴珊, 1985. 渤海地质. 北京: 科学出版社.
      孙倩, 2019. 基于T-PROGS的地下水流随机模拟方法改进和应用(博士学位论文). 北京: 中国地质大学.
      仉文岗, 王琦, 陈福勇, 等, 2021. 考虑岩体空间变异性的边坡可靠度分析及抗滑桩随机响应研究. 岩土力学, 42(11): 3157-3168.
      张伟丽, 邓黎, 庞于涛, 等, 2022. 强震作用下土石坝易损性快速精准分析的CIHA方法. 地球科学, 47(12): 4390-4400. doi: 10.3799/dqkx.2022.362
      张岩, 陈国兴, 赵凯, 等, 2023. 海洋土动剪切模量比和阻尼比预测不确定性特性. 工程力学, 40(5): 161-171.
      赵飞, 俞松波, 李博, 等, 2022. 地震作用下岩质边坡大型振动台试验研究进展. 地球科学, 47(12): 4498-4512. doi: 10.3799/dqkx.2022.317
      朱姣, 陈国兴, 许汉刚, 2015. 地震基岩面的选取对深厚场地地表地震动参数的影响. 岩土工程学报, 37(11): 2079-2087. doi: 10.11779/CJGE201511020
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(1)

      Article views (261) PDF downloads(26) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return